
Modeling with Data: the blog

Ben Klemens

December 19, 2011

DEAR READER,

There are some places in the world that typically have limited internet connectivity:
your bed, the bus, the bathroom, the beach. Yet you still wantto read this blog in those
places. In fact, blogs are really best left for those down-time situations when you didn’t
just sit down in front of a computer to work.

So, here is the PDF version of the blog, with everything in oneplace, so you can
follow the full thread of the story in whatever manner you prefer.

I could have changed everything around to read better on paper, but chose not to.
Instead, you’re getting the raw, exciting feel of the Internet, in a paper format.

0.1 Today I am a blog

6 March 2009
Hi.

This is the blog for my book, Modeling with Data. That means that I’ll be dis-
cussing statistics, scientific inquiry, computing, academia, publishing, and what I had
for lunch before sitting down to write.

Let me tell you why I’m setting up another blog: becausestatistics is amazing. Se-
riously enthralling. Pure mathematics is internally consistent, but comfortably ignores
what we like to call reality; statistics is a field that does the dirty work of linking math-
ematical models with observed phenomena. This is ahard problem, not in the sense
that with enough elbow grease we can solve it, but in the sensethat we mortals are
fundamentally incapable of a definitive solution.

Of course, we do our best anyway. What are the odds that it willrain tomorrow?
Your weatherman will be happy to give you a number, even though just explaining
what that question means is about impossible.

Modeling with Datagrazed the surface of these questions, but it’s a textbook, so
I focused on specific techniques and details rather than the social, technological, and
even philosophical issues underlying the techniques. I will not be talking about the
politics of information, because I already have a blog aboutthat. Also, despite being
the author of a statistics textbook, I’m human, and can perhaps share with you some
interesting ideas about writing, publishing, and doing research in the present day.

2

1
DESCRIPTION VERSUS INFERENCE

1.1 Too many tests

16 March 2009

This is allegedly a blog to accompanyModeling with Data, so I don’t feel too bad
repeating its opening paragraph:

Statistical analysis has two goals, which directly conflict. The first is to
find patterns in static: given the infinite number of variables that one could
observe, how can one discover the relations and patterns that make human
sense? The second goal is a fight againstapophenia, the human tendency
to invent patterns in random static. Given that someone has found a pattern
regarding a handful of variables, how can one verify that it is not just the
product of a lucky draw or an overactive imagination?

It’s the first paragraph in the book because this conflict is just that important. If
you’re in an inferential mindset while working on a descriptive technique, or vice versa,
you’ll be hopelessly confused. If you design a study so that it is as descriptive as
possible, you can easily lose inferential power, and vice versa. The conflict is also a
social conflict, and you’ll find a lot of examples of yelling between a descriptively-
oriented person on one side and an inferentially-oriented person on the other.

I’ll be giving you many, many examples of how the descriptive-inferential conflict
plays out, and why it’s important for reading the newspaper,gathering data, and teach-
ing. But for now, let me just clarify the point a little by giving you the most common
example and the most common point of conflict: selecting the number of hypothesis
tests to run.

First, here are two questions:
• Randomly draw a person from the U.S. population. What are theodds that that

person makes more than $1m/year?
• Randomly draw a million people from the U.S. population. What are the odds

that that wealthiest person in your list makes more than $1m/year?
The odds in the second case will be much higher, because we took pains in that one

to pick the wealthiest person we could.[That is, the first is a hypothesis about just data, the second

is a hypothesis about an order statistic of data.]

Now say that you have a list of variables before you.

3

4 CHAPTER 1. DESCRIPTION VERSUS INFERENCE

GDP/capita

Mean height

Population

Figure 1.1: A lattice plot, relating three variables to eachother

• Claim thatA is correlated toB1. What are the odds that your claim will pass the
appropriate test with more than 95% confidence?

• Write down the best correlation betweenA andB1, B2, . . . , B1,000,000. What
are the odds that your best result will pass the appropriate test with more than 95%
confidence?

You can sit down at your computer and run the same correlationtest in the first
example withB1 and in the second example withBbest, and both tests will have the
same name and produce the same format of output from your software, but you’ve just
run two entirely different tests. Just as with the case of ourwealthiest individual, the
best result from a million results is very likely much betterthan any single result. Even
a million hypothesis tests over noise are likely to find results that are very significant.
[There are disciplines, techniques and tricks to mitigate the problem, but I won’t get into those now. E.g.,

see the Bonferroni correction, on pp 318–319 ofModeling with Data.]

So the context of a test matters, in sometimes subtle ways. This creates friction be-
tween the descriptives and the inferentials, because the descriptives are building tools
to search for the best relationships among as much data as possible, while the inferen-
tials realize that those same tools can diminish our power tohave confidence in those
best relationships.

Next time, I’ll talk about how this relates to some currentlytrendy aspects of
dataviz. After that I’ll reapply this abstract point to academia at large, and Freakonomics-
type journalism in particular.

1.2 The two sides of the statistical war

6 August 2008

This is a continuation of last episode (p 3).
That said, let’s start with a little exercise.
The first figure is a TrellisTM or lattice plot, giving a 2-D dot plot of each of three

variables against each other variable. I didn’t try too hardin producing the plot, and
just pulled out three variables at random from a random data set.

1.2. THE TWO SIDES OF THE STATISTICAL WAR 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
D

P
/c

ap
ita

Mean height

Figure 1.2: A close-up of the upper left plot in the lattice, with the line of best fit

But we can already see some patterns: GDP/capita and height have the positive
correlation you’d expect, as per the blow up in the next figure. In this figure, I fit a
linear regression to the data, and it looks pretty good, but for a few outliers at lower
right. Maybe an exponential-family model may fit better.

6 CHAPTER 1. DESCRIPTION VERSUS INFERENCE

So that’s DataViz at work. We took a lot of data, displayed many relations at once,
and zeroed in on one that matters.

Except, uh, for all that I said about this being a random data set. I just made up
some pleasant-sounding variable names, generated a randomdata set, and plotted it.
And yet we were able to find a plausible pattern in there.

And so we see another way of casting the descriptive versus inferential war—the
problem of too many hypothesis tests. The descriptivists are working to produce meth-
ods like the lattice plot that let you see more relationshipsat once; the inferentialists
are asking: if you fed complete noise to this method, what arethe odds that some sort
of pattern would turn up? As our methods get better at puttingmore data on the screen
at once, they get worse at testing whether the patterns we seeare real or just beautiful
noise.

DataViz Thanks to a number of technological advances, dataViz is trendy right now.
There are a few icons of the field who are working hard on self-promotion, such as
Edward Tufte, whose books show how graphs can be cleaned up, chartjunk elimi-
nated, and grainy black and white fliers from the 1970s cleaned up through the use of
finely detailed illustrations in full color. John Tukey’s Exploratory Data Analysis (cited
above) is aggressively quirky, and encourages disdain for the inferential school.

These guys, and their followers, are right that we could do a whole lot better with
our data visualizations, and that the stuff based on facilitating fitting the line with a
straightedge should have been purged at least twenty years ago. Strunk and White gave
us standards for writing clearly in 1959; it’s about time we developed guidelines for
exposition via graphics.

But we’re talking not just about presenting a known relationship, but exploratory
data analysis via graphics. In this context, the underlyingphilosophy is humanist to a
fault. The claim is that the human brain is the best data-processor out there, and our
computers still can’tseea relationship among a blob of dots as quickly as our eye/brain
combo can. This is true, and a fine justification for better graphical data presentation.
And hey, we humans would all rather look at plots than at tables of numbers.

But apophenia is a powerful force. We look at clouds and see bunnies, or read the
horoscope and think that it’s talking directly to us, or listen to a Beatles song about
playground equipment and think it’s telling us to kill people. Given a handful of scat-
terplots like the lattice plot above, youwill find a pattern—in fact, if a psychologist
were to show you a series of ten seemingly random inkblots1 and you didn’t see a rea-
sonable number of patterns in them, the psychologist might consider you to be mentally
unhealthy in any of a number of ways.

The moral here is that our data visualization technology is getting really good really
fast—I’ll have even slicker examples next time. You’d be silly to ignore these recom-
mendations and novel display methods. But the same power that makes patterns clear
is the power that invents random patterns in static.

Next time: even more dataviz tools, which touch on an even bigger problem.

1http://ar.geocities.com/test_de_rorschach/index.htm

1.2. THE TWO SIDES OF THE STATISTICAL WAR 7

Figure 1.3: If you don’t see faces, you’re crazy. Oh, and there’s a penis and vagina in
every inkblot too.

8 CHAPTER 1. DESCRIPTION VERSUS INFERENCE

1.3 Crowdsourcing data mining

24 March 2008

In the last episode (p 4), I wrote about how dataviz tools takean extreme position in
the descriptive-versus-inferential balance, by giving you the option of eyeballing every
possible test, and then picking the one that works best. But you can’t runeverytest,
because your time is limited. The solution: crowdsource! Put your data up on iCharts2,
iFree3d3, Many Eyes4, Swivel5, Timetric6, Track-n-Graph7, Trendrr8, or Widgenie9,
and then let others try every test that seems sensible to them.

The dicta of the dataviz gurus offer plenty of good advice forpresenting a known
result. When writing a good essay, you want every sentence tohelp the reader under-
stand the essay’s conclusion; when producing a good plot, every inkblot should help
the reader understand the plot’s conclusion. In that context, having easily accessible
tools where you can just drop in your data and get many types ofwell-designed plots
is fabulous.

But the promotional copy for these sites—and even the nameMany Eyes—suggests
that these aren’t just tools for effectively plotting the results of research, but allow the
crowdsourcing of the search for patterns. This is where problems arise, because as per
last episode, this is a recipe for finding both patterns that are and are not present.

Now, to be fair, if you really wanted to just snoop around for the best fit, the time
constraint I’d alluded to above is not a particularly serious problem. It’s not very hard to
write a loop to try every possible combination of a set of variables and report which set
provides the best fit.[I’d actually written up the try-every-regression loop as an exercise inModeling

with Data, but cut it because I thought it was too cynical.]

Here’s my favorite interview10 regarding this issue. The testing-oriented inter-
viewer came as close as politely possible to asking the people who first developed
the lattice display, Rick Becker and Bill Cleveland, whether this display method treads
too close to data snooping:

Interviewer:OK, but there is another way to approach the study of a large
database: develop a statistical model and see if it fits the data. If it does fit,
use the model to learn about the structure of the data.

Becker & Cleveland:Yes, and Trellis display is a big help in doing this
because it allows you to make a good guess about an initial model to fit
and then to diagnose how well it fits the data. [. . .]

Interviewer: But instead of agonizing over all those panels I could do a
bunch of chi-squared tests for goodness of fit.

2http://icharts.net
3http://ifree3d.com
4http://services.alphaworks.ibm.com/manyeyes/
5http://www.swivel.com/
6http://timetric.com/
7http://www.trackngraph.com/
8http://www.trendrr.com/
9http://widgenie.com/

10http://stat.bell-labs.com/project/trellis/interview .html

1.4. FREAKOPHENIA 9

Becker & Cleveland:You’re joking, right? If not, we’re leaving.

Interviewer:OK, I guess I’m joking.

To a descriptive person, looking at a TrellisTM plot is nothing like looking at a ma-
trix of goodness-of-fit statistics—that’s certainly not how it feels. But the two activities
are in the end closely correlated, and if a regression line looks good on the plot, it has
good odds of passing any goodness-of-fit tests.

Many eyes But let me get back to the problem of crowdsourcing the process of trying
every combination of variables.

Say that one researcher finds the middle ground in the descriptive/inferential range.
She comes in with some idea of what the data will say, rather than waiting for the
scatterplot of Delphi to reveal it, and then refines the original idea in dialog with the
data (and good plots of the data). The researcher is not on a pure fishing expedition,
but she is not wearing blinders to what the data has to say.

So one researcher could be reasonable—but what happens whenthere are thou-
sands of reasonable researchers? When a relevant and expensive data set has been
released, a large number of people will interrogate it, eachwith his or her own prior
expectations. I’ve been to an annual conference attended byabout a hundred people
built entirely around a single data set, and who knows how many weren’t able to fly
out. With so many researchers looking at the same set of numbers, every reasonable
hypothesis will be tested.Even if every person maintains the discipline of balancing
data exploration against testing, we as a collective do not.

Every person was careful to not test every option, so none would seem to be mining
the data for the highest statistical significance. But collectively, a thousand hypothesis
tests were run, and journals are heavily inclined to publishonly those that scored highly
on the tests. So it’s the multiple testing problem all over again, but the context is the
hundreds or thousands of researchers around the planet studying the same topic. Try
puttingthat into a cookbook description of a test’s environment.

So our tests just aren’t as powerful as we think they are, because we’re not taking
into account the true, collective context. Both halves of the descriptive/inferential bal-
ance are essential, but the inferential side is increasingly diluted and weakened by the
scaling-up of our descriptive powers. There’s no short-term solution to this one, though
in an episode or two, I’ll discuss some band-aids.

1.4 Freakophenia

6 August 2008

Let me start with an example. You may have read in the New York Times that
obesity is contagious11, in the sense that you’re more likely to be obese if your friends
are. The linked article is reporting a publication [Christakis and Fowler, 2007] from
the New England Journal of Medicine (NEJM), one of the most well-regarded jour-
nals around, which retains is high regard via a press office that puts out press releases

11http://www.nytimes.com/2007/07/25/health/25cnd-fat. html

10 CHAPTER 1. DESCRIPTION VERSUS INFERENCE

on notable articles in each issue (as do many other journals). I made a point of not
closely reading the article, and not critiquing the methods; I’m fine with believing that
they were good enough to pass peer review, made honest use of the data, and that the
statistical significance claimed is a correct read of the data.

But from this subsequent rebuttal [E and Fletcher, 2008]: “We replicate the NEJM
results using their specification and a complementary dataset. We find that point esti-
mates of the ‘social network effect’ are reduced and become statistically indistinguish-
able from zero once standard econometric techniques are implemented.” That is, the
results were basically an artifact of the original authors’data and methods, and statis-
tical significance disappears upon replication.

So it goes. Maybe another study will come by and re-replicate. But right now
it seems that the initial proposal was a matter of what I’d been discussing in a prior
episode (p 4): if you have enough researchers staring at one data set—and we know
there’s a critical mass of researchers working on obesity and on social networks—then
eventually one researcher will verify any given hypothesis.

This isn’t improper behavior of any sort on the part of the authors of the origi-
nal study, the NEJM, the NYT, or the many people who re-reported the results after
they appeared in newspapers. But the publication system is built around the new and
exciting, which is by definition the stuff that hasn’t been replicated or seriously ver-
ified. After all, New study verifies results of study that’s already been out for a year
just doesn’t count as news. Because of the novelty premium, it’s easy to publish—and
publicize—a study that seems statistically significant buthappened to work out only
because of luck and the volume of researchers staring at the problem.

There are some ways by which non-results can get published. In the example above,
we saw a null-result rebuttal to a paper that found a positiveresult. That is, once a
positive result appears, null results become newsworthy (in the academic sense. I don’t
think the NYT published anything about the failure to replicate the obesity headline).
There is finally a Journal of Articles in Support of the Null Hypothesis12 aimed at
dealing with this very problem (which they call the “file drawer problem,” because a
study that gets significant results gets published, and a study that fails to reject the null
winds up in the file drawer).

In medicine, there is the funnel plot, which plots all of thep-values for a hypothesis
from several studies, and then draws a theoretical symmetric funnel around the points;
the gaps in the ideal funnel are assumed to be missing (i.e., unpublished) papers. This
is done in medicine and not other fields because medicine has enough studies on a
single question that you could do this sort of thing.

But Freakonoscience doesn’t have that luxury: it’s all about quirky one-off stud-
ies that have zero attempts at replication. So we don’t have funnel plots, or any other
easy tools to tell us what confidence to place in the results trumpeted in the headlines.
As in prior episodes, even though the reported confidence levels are correct for the
researcher’s context, they are not correct for the reader’slarger context, which should
include both this one study and all those others that may or may not have been pub-
lished. In the larger context, we basically have nothing.

In an episode or two, some notes on how we can respond to this problem.

12http://www.jasnh.com/

2
EUGENICS AND GENETICS

2.1 Your genetic data

6 April 2009

[Or, The ethical implications of SQL.]
The figure explains how my work in statistical genetics is allpossible. It is what

a genetics lab looks like. That’s a work bench, like the ones upon which thousands
of pipettes have squirted millions of liters of fluid in the past. But you can see that it
is now taken up by a big blue box, which hooks up to a PC. Some of these big boxes
use a parallel port (like an old printer) and some run via USB (like your ventilator or
toothbrush). The researcher puts processed genetic material in on the side facing you in
the photo, onto a tray that was clearly a CD-ROM drive in a pastlife. Then the internal
LASER scans the material and outputs about half a million genetic markers to a plain
text file on the PC.

I know I’m not the first to point this out, but the study of humanhealth is increas-
ingly a data processing problem. My complete ignorance regarding all things biological
isn’t an issue in doing analysis, as long as I know how to read atext file into a database
and run statistical tests therefrom.

Implication one: Research methods Historically, the problem has been to find
enough data to say something. One guy had to sail to the Galapagos Islands, others
used to wait for somebody to die so they could do dissections,and endless clinical re-
searchers today post ads on bulletin boards offering a few bucks if you’ll swallow the
blue pill.

But now we have exactly the opposite problem: I’ve got 18 million data points, and
the research consists of paring that down to one confident statement. In a decade or so,
we went from grasping at straws to having a haystack to sift through.

I’ve got tools printed in textbooks from the 1970s that will eke out a relationship
from a minimum of data, and 5GB of genetic data regarding people with bipolar disor-
der over on the other screen. Applying one to the other will give me literally thousands
of ways of diagnosing bipolar disorder, none of which are in any way trustworthy.

So the analytic technology is not quite there yet. There’s a specific protocol for
drawing blood that every nurse practitioner knows by heart,and another protocol for

11

12 CHAPTER 2. EUGENICS AND GENETICS

Figure 2.1: The tools of the data processing field known as Biology

breaking that blood down to every little subpart. We have protocols for gathering ge-
netic data, but don’t yet have reliable and standardized schemes for extracting informa-
tion from it.

When we do have such a protocol—and it’s plausible that we soon will—that’s
when the party starts.

Implication two: Pathways If you remember as much high school biology as I do,
then you know that a gene is translated in human cells into a set of proteins that then
go off and do some specific something (sometimes several specific somethings).

If you know that a certain gene is linked to a certain disorder, then you know that
there is an entire pathway linked to that disorder, and you now have several points
where you could potentially break the chain.[Or at least, that’s how it’d work in theory. Again,

there’s no set protocol.]There are many ways to discover the mechanism of a disorder, but
the genetic root is the big fat hint that can make it all come together right quick. So the
scientists still working with squishy biological organisms are also keeping their eye on
the database-crunchers for clues about what to poke at.

Then, once there’s consensus on a pathway, the drug companies go off and develop
a chemical that breaks the destructive chain, and perhaps make a few million per year
in the process.

Implication three: Free will versus determinism One person I talked to about the
search for genetic causes thought it was all a conspiracy. Ifthere’s a genetic cause for
mental illness, then that means that it’s not the sufferer’sfault or responsibility. Instead
of striving to improve themselves, they should just take a drug. And so, these genetic
studies are elaborate drug-company advertising.

From my casual experience talking to folks about it, I find that this sort of attitude is
especially common regarding psychological disorders. See, every organ in the human

2.2. YOUR GENETIC DATA—ETHICS 13

body is susceptible to misfiring and defects—exceptthe brain, which is created in the
image of ’’, and is always perfect.

Annoyed sarcasm aside, psychological disorders are hard todiagnose, and there’s
a history of truly appalling abuse, such as lobotomies for ill behavior, giving women
hysterectomies to cure their hysteria, the sort of stories that madeOne Flew over the
Cuckoo’s Nestplausible, &c. Further, there are often people who have no physiological
defect in their brains, but still suffer depression or othermood disorders. They get some
sun, do some yoga, and everything works out for them.

But none of that means that the brain can not have defects, andthat those defects
can not be treated.

The problem is that our ability to diagnose is falling behindour ability to cure.
We know that certain depressives respond positively to lithium, Prozac, Lexapro, Well-
butrin, Ritalin, Synthroid, and I don’t know today’s chemical of the month. But we still
don’t have a system to determine which are the need-of-drugsdepressives and which
are the get-some-sun depressives.

Or to give a physical example, we don’t know which obese individuals have prob-
lems because of genetic barriers and which just need to eat less and exercise. It’s only
harder because, like the brain, the metabolism is an adaptive system that can be con-
ditioned for the better or for the worse, confounding diagnosis. Frequently, it’s both
behavior and genetics, albeit sometimes 90% behavior and other times 90% genes.

A genetic cause provides genetic tests. If we have a drug based on a genetic path-
way, as opposed to a drug like Prozac that just seemed to perk people up, we can look
for the presence or absence of that genetic configuration in agiven individual. This
ain’t a silver bullet that will sort people perfectly (if that’s possible at all), but having a
partial test corresponding to each treatment is already well beyond the DSM checklists
we’re stuck with now.

From here, there are ethical implications, which I’ll save for next time.

2.2 Your genetic data—ethics

8 April 2009

In the last episode (p 11), I wrote about how biology is slowlymoving from the
gathering of limited data about organisms to relying on massgenotyping. Even the
biologists working entirely with squishy organisms are looking to the genetic databases
for clues and cues. Here are a few more implications to that transition.

Implication four: Eugenics We can test for genetics not only among adults and
children, but even fetuses. On one small survey, five out of 76British ethics commit-
tee members (6.6%) “thought that screening for red hair and freckles (with a view to
termination) was acceptable.”1

Fœtal gene screens to determine Down syndrome or other life-changing conditions
are common, and 92% of fetuses that return positive for the test for Down Syndrome

1http://adc.bmj.com/cgi/content/full/88/7/607

14 CHAPTER 2. EUGENICS AND GENETICS

are aborted [Mansfield et al.].
Biology has an embarrassing past in eugenics. And we’re not just talking about the

Nazis—the USA has a proud history of eugenics to go along withits proud history of
hating immigrants (I mean recent immigrants, not the ones from fifty years ago, who
are all swell).[The lead author of my last paper refers me to this article on eugenics2, and having read it

I too recommend the first 80%.]

If I may resort to a dictionary definition, the OED tells us that eugenics is the
science “pertaining or adapted to the production of fine offspring, esp. in the human
race.” In the past, that meant killing parents who turned outbadly in life or had big
noses, but hi-tech now allows us to go straight to getting ridof the offspring before
anybody has put in too heavy an investment.

Anyway, I won’t go further with this, but to point out that what we’ll do with all this
fœtal genetic info is an open question—and a loaded one, since the only choices with a
fœtus are basically carry to term or abort. The consensus seems to be that aborting due
to Down syndrome is OK and aborting due to red hair is not, but there’s a whole range
in between. If you know your child has a near-certain chance of getting Alzheimer’s
80 years after birth, would you abort?[This Congressional testimony3 approximately asks this

question.]

Implication five: the ethics of information aggregation This is also well-trodden
turf, so I’ll be brief:

• It is annoying and stupid that every time you show up at the doctor’s office, the
full-time paperwork person hands you a clipboard with eightpapers, each of which
asks your name, full address, and Social Security Number. Bythe seventh page, I
sometimes write my address as “See previous pp” but they don’t take kindly to that,
because each page goes in a different filing cabinet.

You may recall Sebadoh’s song on data and database management: “You can never
be too pure/ or too connected.” If all of your information is in one place, either on your
magical RF-enabled telephone or somewhere in the amorphousness of the web, then
that’s less time everybody wastes filling in papers and then re-filling them in when the
bureaucrat mis-keys everything. I have a FOAF whose immigration paperwork was
delayed for a week or two because somebody spelled her name wrong on a form.

• Having all of your information in one place makes it easier for people to violate
your privacy and security. As advertisers put it, it makes iteasier to offer you goods
and services better attuned to your lifestyle, which is the nice way of saying ‘violate
your privacy’. It means more things they can do to you on routine traffic stops.

The data consolidation=efficiency side is directly opposedto the data disaggrega-
tion=privacy side. There is no solution to this one, and bothsides have their arguments.
The current compromise is to consolidate more and put more locks on the data, but that
doesn’t work very well in practice, as one breach anywhere can ruin the privacy side of
the system.

Back to genetics, when we have a few more snips of informationabout what all
those genes do, your genetic info will certainly be in your medical records. This is a

2http://www.logosjournal.com/issue_6.1-2/jacobsen.ht m
3http://www.hhs.gov/asl/testify/t960917c.html

2.2. YOUR GENETIC DATA—ETHICS 15

good thing because it means that those who need to will be ableto diagnose you more
quickly and efficiently; it is a bad thing because those who don’t need to know may
also find a way to find out personal information about you.

At the moment, you can rely on the anonymity of being a needle in a haystack,
the way that some people who live at the top of high rise buildings are comfortable
walking around naked and with the curtains open—who’s gonnabother to look? But
as the tools and filters and databases become more sophisticated, the haystack may
provide less and less cover.

So we’re going to have a haystack of data about you (and your fœtus) right soon.
Unfortunately, we don’t quite yet know how to analyze, protect, or act on that haystack.

3
WHY WORD IS A TERRIBLE PROGRAM

First of all, it is time to speak some truth to power in this country: Mi-
crosoft Word is a terrible program.

[. . . For example,] there is the moment when you realize that your notes
are starting to appear in 12-pt. Courier New. Word, it seems,has, at some
arbitrary point in the proceedings, decided that although you have been
typing happily away in Times New Roman, you really want to be in the
default font of the original document. You are confident thatyou can lick
this thing: you painstakingly position your cursor in the Endnotes window
(not the text!, where irreparable damage may occur) and click Edit, then
the powerful Select All; you drag the arrow to Normal (praying that your
finger doesn’t lose contact with the mouse, in which case the window will
disappear, and trying not to wonder what the difference between Normal
and Clear Formatting might be) and then, in the little windowto the right,
to Times New Roman. You triumphantly click, and find that you are indeed
back in Times New Roman but that all your italics have been removed.
What about any of this can be considered high-speed?

FromThe end matterby Louis Menand, The New Yorker, issue of 2003-
10-06.

If you are a casual user, then Word is probably fine for you—maybe even ideal.
It’s great that there is a product out there that will help complete novices and your
proverbial Aunt Myrtle to produce beautiful documents.

But for many office workers, regardless of their job title, their actual occupation is
“Word user”. They come in at nine-ish in the morning, edit documents in Word for
eight hours, and go home. If that describes you, if half of your waking life is spent
staring at that program, then you no doubt have a strong interest in working out how
to use your most-used tool efficiently. Maybe the right tool for Aunt Myrtle is not the
right tool for you, and your life would be better if you could jump ship for something
better.

I realize that Word is a standard that many of you are forced touse by your em-
ployers or colleagues. After you send your boss or colleaguea copy of this paper, you
may want to have a look at Section 3.6 for practical suggestions on what you can do
to remain compatible with your coworkers while not letting them drag you down into
inefficiency.

16

3.1. SEMANTIC EDITING 17

I recently wrote a book entitledMath You Can’t Use: Patents, Copyright, and Soft-
ware, so I should clarify that that book and this document are 100%unrelated. That
book was about the law and politics of software, but this paper isn’t: this paper is
about efficiency and usability, and I promise you minimal discussion of the politics of
Microsoft in the pages that follow.

By the way, my publisher asked me to write that book in Word, soI have ironic
first-hand experience with using Word to write a complex document.

3.1 Semantic editing

The key failing of Word is the difficulty of semantically-oriented editing.
The way most of us format a document in a word processor is to change the for-

matting of individual elements as we need them. Titles need to be marked in boldface;
there needs to be this much space put between paragraphs; themargins should be just
so on the cover page. I will call thisliteral markup, where you make changes on the
screen until the text looks the way you want it to look.

The alternative is to specify what each element actuallymeans, and then worry
about how the formatting happens later. Mark the titles as<title>, mark the paragraphs
as<text>, and mark the cover page as<cover>. Then, write a style sheet that lists
rules that titles should be bold, that text has this much space between paragraphs, and
that the cover page’s margins are extra-wide. Then, the computer knows to apply the
formatting described in the style sheet to your document.

The benefits to semantic markup are immense. First, your boss’s boss is going to
tell you to change your titles to italics instead of bold as soon as she sees the document.
In the semantic system, you change the definition of a title element in one place and
you’re done; in the literal markup system, you need to go through the entire document
and change every title individually—and then repeat when your boss’s boss decides
that no, you were right, it does look better in bold.

And did you catch the title on page sixty-eight down at the bottom? With seman-
tic markup, because you didn’t change fifty points in the document, you don’t have to
worry about whether you are still consistent or not. More generally, it is by construc-
tion impossible to have inconsistent style with a semantic markup scheme, because
you define each style exactly once. With literal markup, you need to be on guard for
consistency all the time.

In the literal markup world, you wear two hats at the same time: author and typeset-
ter. In the semantic world, you wear the hats one at a time. When working on content,
you are not distracted by stylistic junk. Some would describe working only on con-
tent and putting off stylistic issues until the very end to be“no fun”, but it is certainly
more efficient. Of course, you are welcome to play around withthe style sheet between
writing every other sentence if you so desire.

The document you are working on now is probably not the only document you are
writing during your career. Once you have a visual style thatyou like, you can save
those definitions of titles, text, and cover sheet to use on every future document. In the
literal markup world, you have to redo the margins on every cover page every time,

18 CHAPTER 3. WHY WORD IS A TERRIBLE PROGRAM

duplicating a few minutes’ effort with every document.1

Along a similar vein, your company has a standard letterhead, and may have a
graphics department that would prefer all documents to havea consistent style. In
semantic-land, your company can distribute a single style sheet and ask that everyone
apply it (even if they think it looks ugly; there are always dissenters in this system). In
literal markup-land, the graphics department sends out a list of fifty rules everyone must
follow when setting up their cover page, wasting everyone’stime and guaranteeing that
half of the rules won’t get followed.

Finally, it is increasingly important that your document beavailable as a PDF, a web
page, and in your company’s legacy TPS format. The semantic system, done right, is
output-independent. You send the same document to one program that marks up titles
appropriate for the printed page, and another that marks it up for the web. If you had
to do literal markup appropriate for both the web and paper, it will look terrible in one
or the other, and you’d just wind up writing and maintaining two documents.

Semantic markup is hands-down the way to format a document. It doesn’t take any
more cognitive effort or ability to mark up your title with\title{Intro}or<title>Intro</title>
than it does to mark it up to read asIntro , so semantic markup provides all of the above
benefits over literal markup for basically no cost.

Semantic markup v WYSIWYG Too bad Word is written from the ground up as a
program for literal markup. If you read the manual, you will see that there exists a style
editor, which claims to allow semantic markup. It lets you define paragraph types and
character types, like a title style or a text style.

So the first tip, should you be using Word, is to use the style editor. Avoid hard-
coding any sort of formatting; instead, define a style and apply that style.

But it’s not entirely that easy, because Word will try its hardest to frustrate you.
Word thinks it is smarter than you, so it will often guess the style you mean to be ap-
plying to a line, and sometimes revert styles back to where they were. Each element can
have only one paragraph and one character style, but there are often reasons to apply
multiple styles at once (blockquote on the cover page, italics in a title). Be careful to
note where your styles are being saved. If they are being saved to yournormal.dot
template, then when you send your document to your colleagues, your styles won’t go
with.2 Best of luck cutting and pasting between documents with different style sheets.
Thereis a style organizer that allows you to move style sheet elements from one doc-
ument to another; it is well-hidden (ask the paperclip for it) but it works. If you want
one style for the web version of your document and one for print, you want too much.

The markup is always invisible: you need to click on the item while the style editor
is up and then scroll through to see what is highlighted. Thismay seem trivial, but is
frustrating if you have multiple, subtly different styles.And you will, because Word
eagerly tries to manage the style list for you. If you italicize an item currently in the

1There are of course tricks, like cutting and pasting the cover sheet from past documents and hoping the
formatting follows. Even when they work, you can see that they are still inefficient relative to applying a
style sheet.

2Tip #2: write yourself a template. Depending on whether the Earth is in a Fire sign or a Water sign, you
may need to send the template with your document.

3.2. MULTIPLE VIEWS 19

title style, then it will autogenerate a title-1 style. Now,when you change all of your
titles to non-bold, the lone item in title-1 may or may not follow along.

In short, youcanuse Word for semantic markup, but only with discipline and pa-
tience. Word is a literal markup system, and the style editoris your window on Word’s
internal means of organizing literal markup. It is not a full-blown semantic style sheet,
as shown by its little failings above.

The bibliography Louis Menand’s opening comments are from an essay entitled
“The End Matter”, and spends much time describing the futility, misery, and in the
end, impossibleness of writing a bibliography.

Annotation may seem a mindless and mechanical task. In fact,it calls both
for superb fine-motor skills and for adherence to the most exiguous formal
demands [...] and the combination is guaranteed to produce flawed page
after flawed page. In the world of End Matter, there is no such thing as a
flyspeck. Every error is an error of substance, a betrayal of ignorance and
inexperience, the academic equivalent of the double dribble.

If you are writing bibliographies by hand, as Mr Menand is doing as a Word user,
you are wasting your life. Remembering where to put the commas, what to italicize,
when to use the full first name and when to use initials, is the sort of work that a
computer does easily and that we humans have trouble doing perfectly. Word’s demand
that users need to hand-edit their bibliographies has no doubt cost the world literally
millions of person-hours.

The correct way to do a bibliography is via a database. You provide one entry
for each reference, typing out the author, the title, the publisher, et cetera. Then, the
computer reads the database and puts the result in your document according to a style
sheet such as that published by the University of Chicago or the APA. That is, the best
means is via semantic mark-up: you tell the system that “Joe Guzman” is the author,
and leave it to the computer to decide whether to print “Guzman, J”, “Guzman, Joe”,
“J. Guzman” or what-have-you on the page.

OpenOffice.org wins points for including a bibliography editor. LATEX includes
bibtex. Word does not include one, although you can purchaseone from a third party
for a hundred dollars or so.3

3.2 Multiple views

A major contribution of the IT era has been to allow multiple views of the same work.
Products are becoming less like a single book, which is a fixed, indivisible object, and
more like a song, which is merely a brief view on something forwhich hundreds of
other views exist.

Your favorite pop song was probably recorded onto 24 tracks,and then loaded onto
a sound mixer such as Audacity, a program built around facilitating multiple views of

3Of course, if you use an add-on like this, you won’t be able to email your document to a colleague (or
yourself at another computer) for editing unless the recipient has also paid out the hundred dollars for the
same program.

20 CHAPTER 3. WHY WORD IS A TERRIBLE PROGRAM

the music. There’s a visual representation of the sound and of course the noise the thing
makes. The data is multilayered, and the user can view/hear the final work with some
layers processed, muted, inverted, et cetera.

Users of the GIMP or Photoshop are familiar with the same process: there are all
these layers, and each can be viewed differently, separated, filtered. At some point, you
set a fixed view and publish it as the final image, but with both the visual and audio
systems, the base version holds much more information than the final view.

Databases have what is literally called a view, but even without them, users are
encouraged to think in terms of the root data existing in the database and what’s on the
screen being a slice of it. The root data needs to be taken careof, but mangle the view
all you want; it’s disposable. HTML is the markup language used by web pages; it is
plain text but then viewed via a cute renderer like Internet Explorer or Firefox. Your
file browser will let you look at the pile of bits on your hard drive sorted by name, type,
or size, or a number of other slices.

Almost all information processing in all media takes the views-of-base-data form.
But there are three hard-and-fast exceptions to the paradigm: spreadsheets, word pro-
cessors, and presentation software. There is a picture of the page on the screen, and
that’s the document. There are few ways to view the work differently when you’re
working on it than when the final output will be printed or displayed on somebody
else’s screen. With due creativity, you can find the outline view or other marginal shifts
[by which I mean you can choose whether the page margins appear on the screen or not], but for the most
part, these systems work by vehemently insisting that therebe only one view. All of
the document’s information is present in all versions.

And that is one more reason why Word is a terrible program: it constrains the user
in the classical paradigm of “one work, one view”. Can I distribute drastically different
views of the same work to different people? They would just betwo different works,
that you’ll have to maintain separately. When I present to the world congress, is there
a clean version that I can use? Nah, just hit<F9> to blow up your working copy to
full-screen size.

This is clearly what many people wanted, and most are happy with it. Multiple
views are overkill for simple documents. The two-bit philosophy questions of which is
the true version of the work evaporate; the conceptual structure of a root object which
is viewed in different ways flattens out; our documents are just like they were in the
70s, but backlit. But being stuck in the seventies means thatthere is a clear and evident
ceiling in efficacy, because the ideal view for working on a project matches the output
view in only the most simple and lucky of circumstances.

The view issue dovetails with the semantic markup issue fromlast time, because
semantic markup by definition means working with markup and then producing beau-
tiful output from that. For example, a bibliography editor or database gives a straight-
information view of the bibliography, and then the system produces a different view of
the data for the APA, Chicago, or Harvard stylebook. But if wehave only a one work =
one view paradigm, we can’t work on content in one view and formatting in a separate
view.

HTML gives us some hope for the future here, because the actual work is done
in a markup language and the output has myriad possible views—and people have no
problem with the concept. One person can read the work on his big-screen browser,

3.3. INTUITION AND LYING TO THE USER 21

one can read it on his telephone, and one can hear it on her text-to-speech reader, and
all agree that they’ve read the same document.

Commenting A compounding failing of Word is that it won’t let me insert the wealth
of expletives that it inspires in me. With the one work = one view paradigm, there is
nowhere for me to leave personal comments to myself that won’t go into the public
version. I often leave notes about sources, the full excerptof a passage I edited down, or
other side-notes about note-worthy bits. Without properlyenforced private and public
views, I’d need to either keep a side document or just throw out this info.

Computer programmers have a trick known as ‘commenting out’. Because the
computer ignores anything marked as a comment, a coder can mark functioning lines
of code as a comment to see how the program would run if that line were eliminated.
It’s a sort of purgatory for code that should maybe be deleted, but the judgement hasn’t
yet been handed down. Similarly, I write more than enough prose that is maybe a bit
too verbose to put in the final work. I am reluctant to delete it, because I spent ten
minutes composing that paragraph, but commenting it out is painless and reversible.

In Word, I am unable to leave personal notes to to guide myself, and I am unable to
comment out sections that should probably be deleted. That is, Word gives me fewer
tools to write with so that it can enforce its intuitive paradigm.

3.3 Intuition and lying to the user

A book entitledDesign of Everyday Things, by Donald A Norman [Norman, 1988]
very clearly had an influence on the design of many of Microsoft’s products. It in turn
was influenced by what was trendy at the time (1988): the original Macintosh features
prominently, there is a whole page on the promise of hypertext, and he complains about
EMACS. In his section on Two Modes of Computer Usage, he explains that there’s a
third-person mode wherein you give commands to the computer, and then the computer
executes them; and there’s a first-person mode where you do things your own darn self,
like telling the computer to multiply matrix A by matrix B versus entering numbers
into the cells of a spreadsheet. At the ideal, you can’t tell that you’re using a computer;
the intermediary dissolves away and it just feels like working on a problem. Of course,
some tasks are too hard for first-person execution, as Mr. Norman explains: “I find that
I often need first-person systems for which there is a backup intermediary, ready to take
over when asked, available for advice when needed.” This paragraph, I posit without a
shred of proof, is the genesis of Clippy the Office Assistant.

Although Mr. Norman points out that we feel more human and less like computer
users when we are in first-person mode, it is often a terribly inefficient way to work. A
word-processor document isnot like handwriting a letter, so pretending it is is some-
times folly. For example, you don’t hard-code numbers: instead of writing Chapter 3,
you’d write Chapter\ref{morerambling} (LATEX form; Word has a similar thing), and
let the computer work out what number goes with the morerambling reference.4

4I used the LaTeX markup for Chapter\ref{more rambling} here because it saves me the trouble of
having to explain the seven-step process it takes to do the same thing in Word. And by the way, if you
change the referred-to chapter’s title, all of the references will break and you’ll have to repeat the seven-step

22 CHAPTER 3. WHY WORD IS A TERRIBLE PROGRAM

In the context above, first-person mode matches literal markup. Don’t write a note
to the computer that it should find all titles and boldface them; instead, go and boldface
them all the way you would if you had a highlighter and paper inhand. Third-person
commands are inhuman, unintuitive, and how we get computersto make our lives easier
and more efficient.

Forcing the user DOET has much to say about saving the user from him, her, or
itself. Make it impossible to make errors, he advises designers. His shining example
of good design are car doors that can only be locked from the outside using the key.
There’s a trade-off of some inconvenience, but it is absolutely impossible to lock the
car keys inside. Word clearly fails on this one: you want to hard-code your references?
Feel free; in fact, we’ll make it hard for you to do otherwise,since doing otherwise
doesn’t follow the metaphor of simply writing on paper.

More generally, a good design has restrictions: if you can only put your hand in
one place on the door’s surface, then that’s where you’ll putyour hand, and the door
will open on the first try. What about LATEX? It gives you a blank page. You can type a
basically infinite range of possibilities. This is where DOET leaves the command line:
it isn’t restrictive enough to guide the user, and thereforeis a bad design.

I think he’s got the interpretation entirely wrong: there isonly one thing that you
can do with the blank slate that you get in EMACS, LATEX, or a command line: read
the manual (RTFM). Just as your car won’t let you lock yourself out, you can’t write a
crappy document in LATEX until you’ve gotten a copy of the manual and at least had half
a chance to expose yourself to the correct way to do things. Mr. Norman again: “Alas,
even the best manuals cannot be counted on; many users do not read them. Obviously
it is wrong to expect to operate complex devices without instruction of some sort, but
the designers of complex devices have to deal with human nature as it is.” True, people
won’t read manuals unless you force them to. So force them to.

Ease of initial use The benefit of the intuitive interface is that you don’t have to read
the manual.5 You can jump in and go. Aunt Myrtle only writes one letter a month, so
making her spend an hour reading the introduction manual—which she will entirely
forget by next month—is inefficient and bad design.

But ease of initial use is only important for those items thatwe only use once or
occasionally. Think of the things you use every day: your preferred means of transport
may be an automobile, a bicycle, or your shoelaces. You spendall day typing with a
QWERTY keyboard. Perhaps you play a musical instrument. Thefact that you are
reading this indicates that you are literate. None of these things are intuitive. You
spent time (in some cases, years) learning how to do them, andnow that you did, you
enjoy driving, riding, playing, and reading without thinking about the time you spent
practicing.

Simply put, not having to read the manual is massively overrated. If a person is
going to use a device for several hours every day for the next year or even the next

process for each reference.
5By the way, I rarely find intuitive interfaces toactually be intuitive. They’re designed around certain

target users whom I’m evidently incapable of thinking like.More generally, the concept of having an intuitive
interface assumes that the intuition of everybody on Earth is exactly the same.

3.3. INTUITION AND LYING TO THE USER 23

decade, then for them to spend an hour, and maybe even weeks, learning to use the
device efficiently makes complete sense. More on this important point later.

Metaphor shear Another problem is what Neal Stephenson callsmetaphor shear.
That’s when you’re happily working with a mental model in theback of your mind,
and one day your metaphor breaks. Back to DOET: “Three different aspects of mental
models must be distinguished: thedesign model, theuser’s model, and thesystem im-
age[. . .]. The design model is the conceptualization that the designer had in mind. The
user’s model is what the user develops to explain the operation of the system. Ideally,
the user’s model and the design model are equivalent. However, the user and designer
communicate only through the system itself: its physical appearance, its operation,
the way it responds, and the manuals and instructions that accompany it. Thus, the
system imageis critical; the designer must ensure that everything aboutthe product is
consistent with and exemplifies the operation of the proper conceptual model.”

This is where DOET overestimates computing. It’s a book that’s mostly about
doors and faucets and other everyday objects. He’s right that if you have to RTFM
to work a door (even if the manual just saysPush), the door’s design is broken. He’s
right that for complex systems, like panels of airline instruments, they should not work
againstintuition (e.g., if two levers do different things, they should look different). But
he combines them into a false conclusion: complex systems should work with intuition
so well that you shouldn’t have to read the manual.

First, this is absurd in any setting but desktop computers. Would you feel OK if
your pilot told you the plane was so intuitive that she didn’tbother learning how to use
it before the flight?

But back to the main point, making a word processor which is sointuitive to the
user that he or she doesn’t have to RTFM is amuchmore complex task than making a
manual-less faucet. If we needed to build a faucet such that it runs if the user presses it
with his hand, bangs it with a pot, or bumps it with his elbow, that would be easy—put
a button on the top. But to program a picture of a faucet such that the user can click on
the thing, or double-click on the thing, or type R and all makethe picture of a faucet run
requires programming a call to the Run method for three separate events. If the user
comes up with something that the programmer didn’t think of,like holding down the
alt key and clicking on the picture, then the user’s metaphorshears. What your momma
told you is true: it’s easier to just present the truth than toweave a whole world around
a lie.6

Mr. Norman’s call for simple interfaces (he doesn’t really say anything about meta-
phors to physical objects, but he does talk about simple mental models, and for most of
us that means physical metaphors) therefore leads us down a supremely difficult path:
first, the program designer must lie to the user by presentinga metaphor that is easy
for the user to immediately guess at. Then, the designer mustnow design the program
so that anything the user does, no matter how unpredictable,will cause the program to

6For those down with the lingo: every event has to have a methodfor every object, which is dozens of
events times dozens of objects equals hundreds of things that could go wrong with the metaphor—assuming
you got good rules about passing the right events to the rightobjects to begin with. Inheritance doesn’t help
because most of the time the inherited methods don’t quite work as they should, leaving you with objects
which almost fit the metaphor.

24 CHAPTER 3. WHY WORD IS A TERRIBLE PROGRAM

behave in the correct metaphorical manner. This is a very high bar, to the point that a
program as complex as Word simply can not achieve it.

Feature creep Mr. Norman is right that we shouldn’t have to RTFM for simple,ev-
eryday tasks. Writing a letter or one-page paper is so commonthat his principle that it
should be manual-less should probably apply. Further, we have the technology. How-
ever, as I’ve learned ever-so-painfully, writing a book is an order of magnitude more
technically difficult. Programs like Word and Scientific Word imply that writing a let-
ter and a book are are identical, just a matter of extent, whenin the end they aren’t:
one has a valid paper metaphor attached, which programmers can easily implement,
and one does not. A good word processor, then, would let you dobasic things without
effort, and then put its foot down at some point. You get all the tools you need to write a
business letter, and then if you want more, you’ll need to geta new tool with a manual.
Clearly, nobody is ever going to write a program like this. Tosome extent, this is a
good thing, since it pushes technology forward, but at the expense of annoying users
who have to sit through half-appropriate metaphors badly implemented. Mr. Norman
writes about creeping featurism as an evil which pervades all of design, and he’s right:
nobody ever says “I’m done.”7

One good way to implement this would be a simple graphical front end to the basic
features of a less metaphor-laden back-end program. When you’ve sapped the offerings
of the graphical front end, you’ll have a bearing when you RTFM on the less intuitive
stuff. This is how a host of Unixy programs work, but the frontends also eventually
succumb to featurism. Scientific Word takes it to the extreme, by trying to give you
a button for every last feature and refusing to admit that it is a front-end—perhaps
because it is an expensive front-end to free software.

Since no programmer will ever have the discipline to admit that their manual-less
tool will work only for a limited range of tasks, the discipline falls upon the user to
realize that it’s OK to use simplifying metaphors for simplesituations, but complex
tasks require tools that don’t lie to you.

Word is carefully built from the ground up to be intuitive, not to be efficient—and it
lies to you every step of the way to give the impression that the system actually works
the way you intuitively guess it does. The next section describes how even the smallest
intuitive but inefficient detail can add up to immense time costs in a system you use all
day, every day.

3.4 Ergonomics

[I wrote this in late 2005:]Google recently put out an RSS reader. It’s pretty cute, and I
personally have switched to it.

If you aren’t familiar with RSS, then that is no matter here (it’s a syndication system
for web sites). The interesting feature of the reader for ourpurposes is that the J key
will let you go down in the list of headlines. Yes, J, as in, uh,jo down. K, as inkup

7There is a stand-out exception to this: TEX was done in 1988, after nobody claimed the author’s cash
prize for finding bugs, and the code base has not changed sincethen. The add-on, LATEX, was cemented in
1994. Authors who want to change something in the system mustadd a package to the base systems.

3.4. ERGONOMICS 25

goes up in the list. There is absolutely nothing mnemonic about the J and K keys, but
theyfeel wonderful. I assume you knows how to type properly, with hands on the home
keys; I generally find my hands are on the home keys even when I’m just staring at the
screen, and my hand doesn’t need any help from my brain to find the little nubbin on
the J key.

But that J key. It’s the index finger of 90% of the world’s dominant hand, and the
keyboard is designed so that that index finger knows exactly where to rest. Moving
down on the page is the most common operation, both in readingand even editing, so
it makes complete ergonomic sense to attach this to the strongest finger of the strongest
hand. Even the lefties will have no problem with it.

But it flies in the face of all mnemonics. Maybe you can come up with some word
having to do with the process of scrolling down that begins with the letter J, but I’ve
got nothin’. Nor could I think of a more efficient keymap.

I personally think the use of the J key is easy to learn becauseof its ergonomic
delight. But it throws ease of initial use out the window—almost belligerently. You
want to use the nifty hotkeys? Then RTFM.

An interface which worksagainstintuition can be destructive, so if U went down
and D went up, we’d have to write off the application as hopeless, but J doesn’t work
against anything. It’s just a gesture.

Within a week of Google’s RSS rollout, Bloglines, a competing RSS aggregation
service, added a little header to its page: “You can now navigate through Bloglines
with hotkeys[. . .]: j - next article k - previous article [. . .]”

Anybody familiar with the OpenOffice.org internals? bdamm (at) openoffice (dot)
org will give you a hundred bucks to write code to have J move the cursor down a line
(plus a handful of other keystrokes like K).

The war Lest you think this J thing is some sort of recent meme, it all comes from
vi, a text editor written in 1976. I am using a version of vi (named vim) to write this
right now. Let’s pause for a second and let that sink in: most programs have a shelf
life of about six months, and this guy wrote a program thirty years ago which is still
in somewhat common use today. j goes down, k goes up,{jfw will go to the first
instance of the letter w in your paragraph, and, since I can’tstand seeing that unclosed
open-bracket, I have to tell you that}j%d% will delete a parenthetical remark in the
first line of the next paragraph. Which is all to show you that Mr. Joy, the author of vi,
fell soundly on the efficiency side of the efficiency vs intuition scale—and that is why
his text editor has survived for thirty years, and is being imitated by cutting-edge web
services.

We sometimes like to write documents that actually have Js inthem, and vi thus
has modes: in editing mode, j goes down and d$ will delete the rest of the line; in insert
mode, the j key puts a j on the screen, and typing d$ puts gibberish on the screen which
quickly reminds you you’re in the wrong mode.

There are two competitors to J. The first is the ctrl-D school,rooted in EMACS,
written by a certain Mr. RM Stallman. EMACS’s keymap is sort of like vi’s, in that
it’s not particularly intuitive, but once you’ve learned it, you’re done. However, it’s a
compromise along the efficiency vs intuition scale, becauseyou don’t need to deal with

26 CHAPTER 3. WHY WORD IS A TERRIBLE PROGRAM

the unintuitive modes but reaching for the ctrl key all the time is not nearly as pleasant
as twitching your index finger to hit the j key.8 The EMACS vs vi war is a long-standing
one, which is just silly, because they’re of basically comparable efficiency. No, there
are other schools that are a real drain on the economy, like the down-arrow school.

Let me take a paragraph or two to make this as clear as possible: the down-arrow
school is a total failure when it comes to efficiency. On my screen right now, getting to
the first w in the last paragraph via arrow keys is 27 keystrokes (using ctrl-arrow to go
by word where possible). It’s about three or four seconds fora single navigation. Do
forty three-second navigations in a day and you’re already up to nine hours in a work-
year—a full work day a year just hitting the arrow key. You getto multiply by your
wage to see what your company is spending per annum to facilitate ease of initial use.
Even if it’s one tap of the arrow key, your hands are already off the home keys; going
off and on again is another half-second. If you do a hundred arrow-key navigations in
a day (and if you’re an office worker who does a lot of writing, you probably do closer
to a thousand), that’s another full work day a year just moving your right hand back
and forth between the arrow keys and the home keys.

There is only one school that fails with such vehemence that it makes the down-
arrow school look like Nirvana: the mouse school. In the mouse school, you take one
hand—typically your dominant hand—off of the keyboard entirely, reaching to some
part of the desk that is ergonomically suboptimal (because your keyboard is already in
the optimal location). You position your hand on the mouse, and then move the cursor
along the screen. It is an analog device, so aim and precisionmatter, meaning that some
people simply do not have the eyesight and dexterity to use the mouse at all: try getting
Aunt Myrtle to highlight the letteri in a font where that letter is one pixel wide. You
guide the mouse to the pixels that are by the word you want to change, click, carefully
drag, and return your hand to the keyboard. The entire process can easily take more
than four or five seconds, just to position the cursor. And if you have to scroll through
the document to find the point, that’s easily ten seconds as prelude to a single edit.

The rabidness of the aforementioned text editor wars comes from the fact that text
editing absorbs a huge amount of one’s life. If you’re like most office drones, most of
your time at the computer is spent writing and editing plain text—and you’re just one
office drone; there are millions in the U.S.A. who are all operating computers basically
identical to yours, using a down-arrow/mouse school text editor of some sort. Sure,
there are people doing flashy data-slinging with big servers, but the bulk of computing
is the literally billions of person hours per year spent editing text. Now multiply that
half-second to move the right hand to the arrow key; at this scale, it adds up to millions
of person-days per year spent on making that little twitch. With an entirely straight
face, I can say that on the order of a billion dollars per year is spent on paying people
to hit arrow keys.

When the programmer guys got together and wrote whatever it is you use to write
your documents and navigate your web pages, they had all of the paradigms above at
hand. Half of these guys are using EMACS or vi themselves. We get frustrated when
we ask Mr. Computer Geek for help and he (always a boy, eh) comes back with over-
everyone’s-head exposition about just opening up regedt and doing a quick ctrl-f for

8The joke is that EMACS stands for escape meta alt control shift.

3.4. ERGONOMICS 27

HKEY {343-f2ea53e}. Less blatant but just as insidious is when Mr. Geek assumes
you are an idiot. He knows that he knows more about PCs than youdo, therefore
you are dumb and wholly incapable of learning the reams of knowledge that he has
compiled. I have been at many a workplace with IT departmentsthat are stocked with
such people; it’s only some vestige of courtesy that keeps them from installing drool-
guards on all the company keyboards.

Of course, the IT department is thinking about the worst-case users. But when was
it ever efficient to force everybody in a several-hundred person organization to work
with exactly the tools that the least-able could work with? You may have a legally blind
worker at your workplace, but that doesn’t mean that every computer in the building
needs to operate exclusively at super-magnified resolution. A reasonable approach
would be a system where you could select between the various schools of navigation.
Most versions of vi let you do this (and EMACS allows ctrl-D, down-arrow, and a
limited j-mode), but few down-arrow school programs include the wealth of editing
keystrokes that those programs provide.

And so I take Google’s j and k keys as a slight victory in a long battle against the
forces of condescension. It’s just two keys, a far cry from a word processor with a
full vi keymap, but it’s a sign that the guys who designed and programmed the system
felt that it was more important to make usage efficient than tomake it drool-proof. As
such, it gives me hope that maybe the software of the future might focus on long-term
efficiency over the quick sell.

Formatting and ergonomics Beyond editing, all this applies to formatting in Word
too, because you have to use the mouse or an absurd amount of tabbing and arrowing
to navigate the menus and dialog boxes to get to the option youwant to change. For
almost every step of the way, Word eagerly picks intuition over efficiency.

Of course, the most commonly-used features, like boldface,have their own ctrl-key
combination, to at least save the user mouse and arrow-key inefficiency for the dozen
most commonly-used operations. Also, you can use alt-F to access the File menu, alt-E
to use the Edit menu, et cetera.

But even having the few control-key combinations you do havecreates problems,
because there are only 26 control-letters to use. If they aretaken up with the typesetting
features of Word, then they can’t be used for the plain old editing of text. EMACS and
vi give the user fifty-odd keystrokes that edit text (I’m guessing because I couldn’t
possibly count them all); Word gives you cut, paste, copy, and that’s about it. For every
other editing task, you have to make do with the arrow keys. The majority of your time
putting together a paper is spent writing and editing, so having so many keystrokes at
your fingertips for formatting but almost none for editing isbackward.

There is no place in Word’s intuitive editing model for a key combination to delete
a word at a time, to repeat the last edit, to jump to wherever you were last working,
or to switch a lowercase letter to capital. But such keystrokes provide immense speed
gains to users who have taken the time to learn them. But whichdo you do more often
in a day: skip back to the beginning of a sentence, or switch toboldface?

One reason we have so many formatting commands is—once again—the lack of
style sheets, which means that formatting is not produced bylisting what you want

28 CHAPTER 3. WHY WORD IS A TERRIBLE PROGRAM

the formatting to look like, but by applying it over and over again, which means that
keystrokes to apply formatting are competing with editing keystrokes for frequency of
use. It would be nice to have a dedicated editing program plusa separate dedicated
formatting program, but Word’s DOC format precludes this.

3.5 The DOC format and standards compliance

The World Wide Web consortium (the W3C) maintains the standards for what is a valid
web page, and they provide a validator for web authors to use to check the validity of
our own pages, athttp://validator.w3.org .

Most authors could care less about validation. They figure that if it looks OK on
the browser they’re using, and maybe one other, then they’redone. For example, try
validating the home page of the World Bank (265 errors).9

Even as esteemed an organization as the Library of Congress (whose front page val-
idates perfectly) has considered building web pages that violate standards to the point
of only working in one brand of browser, but at least they werepolite enough to float
the possibility with a request for comments first. Tim Berners-Lee, the author of the
original HTML standard and frequently credited as the founder of the Internet, submit-
ted a comment that explained the importance of documents written around standards
instead of programs:

At the outset, we would like to stress that nothing in this letter should be
construed as a criticism of Microsoft’s Internet Explorer [. . .]. We would
write the same letter if the choice was to offer support solely for Mozilla
Firefox, Safari, or any other product. [. . .]

While a large proportion of the marketplace uses the Microsoft Internet
Explorer to browse the Web, certain classes of users will findit either im-
possible or extremely inconvenient to do so. [. . .] Users with disabilities
often must augment their browsing software with special assistive software
and/or hardware (“assistive technology”). [. . .] In addition, some individ-
uals with disabilities rely on alternative browsers (for instance, “talking
browsers”) that are designed to meet their specific needs. Users with dis-
abilities rely on a standards-based Web to ensure that services they access
on the Web will be usable through the variety of mainstream software and
specialized assistive technologies that they use.

He also points out that when a security flaw is found in a product, people or institu-
tions will often switch to a competitor until the security flaw is patched. That is, even
we of decent eyesight would do well to keep a variety of readers on our hard drives (I
use three). This is obviously only possible if a variety of readers can all understand the
same document format.

9Stats are from validation attempts in late 2005. I sincerelyhope they do better if you try them today.

3.5. THE DOC FORMAT AND STANDARDS COMPLIANCE 29

Extending the standards So standards are good. But despite the obviousness of that
statement, folks still insist on not complying.

Surely, the most common reason for ignoring a standard is that it does not allow for
some form of expression that the author eagerly wants to use.But the author needs to
bear in mind that freer expression bears all the costs of broken standards. My favorite
Thai restaurant near work, Thaiphoon,10 has a website that I sometimes check so I can
order ahead. When I open with my usual browser, I get a notice that I need to get
the Flash plugin to view the site. Since I’m checking from a heavily restricted work
computer, I can’t install Flash, and often wind up eating at the Chinese place instead.
But what happens when I visit the website in a Flash-enabled browser? I get a menu.
A plain English text menu.

Or consider the sad state of email. Like a restaurant menu, about 100% of email is
also plain text. You tell people things, using words. For about 40 years, there has been
a standard (ASCII) that allows different programs to interpret text correctly. Ah, what
Nirvana: all the information we need to get across can be gotten across with an easy
and supremely well-supported standard. If the UN worked this well, we would have
world peace. In fact, now that the computing world is increasingly international, there
are more character sets than English-centric ASCII, but nearly every known language
is supported by the Unicode standard (yes, Ogham, Ugaritic,Deseret, and Limbu are in
there.) Yet people increasingly throw the standard out and encode the text into a word
processor document in a proprietary format. If you’re lucky, you have a word processor
that can read the proprietary-format documents your colleague emailed. For example,
if the sender has Word 2000 and the recipient has Word 95, communication won’t
happen. Putting plain text in a word processor document—even with a bit of extra
formatting—is exactly on par with putting a plain old menu ina Flash plugin: yeah,
there’s a little more glitz, but it comes at the price of potentially excluding, imposing
work upon, or alienating the reader.

Of course, word processor documents are nice because they doprovide extensions
on top of plain text. They let you control the font and layout that the recipient sees in
ways that plain text can only approximate. Flash certainly does things that HTML will
never even think of supporting. But there is a trade-off thatmany people ignore, under
the presumption that everybody is just like them. “Well,I have a copy of Word 2000
and an email client that displays web pages, so everybody else must too. My eyesight
and dexterity with mouse and keyboard is fine, so my recipient’s must be too.” In a
social context, the presumption that everybody is like you is the source of a great deal
of impoliteness, offense, and general unhappiness, and we teach people from early
childhood to understand that others are not like them and that they should maintain
standards of decorum until they know that the other party is OK with breaking them.
Sure, we can wear the risquè t-shirt to work and maybe make some people smile, but
we know that such free expression carries a trade-off in the form of a risk of offending
some. We should do the same when writing documents: stick to the basic standards
unless we have a reason to do otherwise and we know that the recipient is OK with our
new-fangled alternative.

There do exist valid reasons to ignore standards or set out toestablish new ones;

10CT & S, NW DC. Try the Panang tofu.

30 CHAPTER 3. WHY WORD IS A TERRIBLE PROGRAM

e.g., the correct response to a spoken “thank you” is “you’rewelcome”, but it is ac-
cepted custom to send a “thank you” email but not a “you’re welcome” email, because
that sort of thing just sort of clutters up the in box [?]. But those who ignore the stan-
dards for no reason or for lousy reasons (“I don’t have to say thanks—he owed me.”)
are just rude.

Bringing it back to the subject at hand, Word establishes itsown standard, when
it doesn’t have to. First, users often write a Word document when a simple plain text
file will do. An email with no text in the body but a Word attachment with a single
paragraph of plain text is a waste in every sense.

Second, there are standards that do approximately everything a Word document
does, such as HTML. You can probably think of a few things thatyou can do in Word
that you can’t do in HTML. You can also probably live your entire professional life not
using them.

Alternative tools Microsoft goes out of its way to make its DOC format opaque,
because users are better locked-in if they can only edit their colleagues’ documents
with Microsoft tools. But I promised you a paper that does notdiscuss Microsoft’s
business strategy, but how Word’s design hurts your efficiency. The closed-format
design means that, by definition, the only way to edit a Word document is in Word.

There are literally hundreds of editors for a LATEX or HTML document. You can use
anything that can read ASCII-formatted files—even including Word. That means that a
market has sprung up that eagerly attempts to appease the needs and skills of different
users. As above, EMACS and vi are specialized text editors and therefore have dozens
of commands to just edit text, but there are hundreds of othertext editors that I didn’t
mention; pick the one that most fits your lifestyle and run with it. For Word documents,
you have no choice but to edit them in Word.

On the output end, there are a wide variety of programs that read LATEX-formatted
documents and display them via formats like HTML, PDF, or plain text. Because the
file format is open, many people have implemented programs toprocess LATEX-marked
text to produce interesting new output. I’ll have more such options in the sequel.

Meanwhile, the only thing you can do with a Word document is open it in Word.
If Word is not to your liking for any reason, you are stuck. If you need to output
something besides Word DOC format, you had better hope that Word allows you to do
the conversion.11

XML The more tech-savvy readers know that the latest version of Word uses the ex-
tensible markup language (XML), which is a commonly-accepted standard for seman-
tic markup. However, this is slightly misleading. First, there is not yet a mechanism
to write your own style sheets as I described above. Markup like this is
valid XML, but it’s just an elaborate way to say boldface. That is, Word takes a system
designed for semantic markup and uses it for literal markup.

11Yes, many people try eagerly to write Word-document compatible extensions, with varying success. But
the market for such extensions is absolutely miniscule compared to the market around plain text.

OpenOffice.org will save DOC files as PDFs, by the way. Even if you are married to Word, you may want
to download OpenOffice.org and keep it around exclusively asa PDF converter.

3.6. ALTERNATIVES TO WORD 31

But more importantly, using the XML standard does not yet mean easy interoper-
ability. XML is a format for writing down data in a tree structure using plain text, so
that it can be easily parsed by readers in any system. XML parsers are common in most
coding languages, your browser, Word, and many telephones.But once you’ve got the
XML tree read in, what can you do with it?

An XML file depends on a companion document type definition (DTD) file that ex-
plains what headings and types and modifiers are available. There are many, depending
on your purpose. An address book will define structures for people and organizations,
while XHTML defines headers and tables. Two XML systems that read different DTDs
are, in the end, incompatible. If one system marks paragraphs with<p> and another
with <par>, then the two won’t be able to do anything with each other’s data, even
though parsing the XML structure will be a non-issue.

Word’s XML is Word-specific. Politics: although there existopen DTDs for text
documents, including DocBook and OpenDoc, Microsoft is insisting on supporting one
and only one XML schema: its own. It has applied for patents onthat schema in the
U.S. and Europe, and although it has stated that it will allowothers to use its soon-
to-be-patented technology for free, many are wary of whether the format will remain
open.

So Word’s XML is a near-miss: it solves the problem of parsingthe bits on the hard
drive in a standard manner, but it doesn’t take advantage of the possibility of semantic
markup, or of using any of the myriad existing formats that are well-supported by
others.

I’ve argued for the value of decoupling the interface from the document, so that
if you don’t like how Word does its thing, you can use another tool to edit your doc-
ument, and then send your finished product to a Word-using colleague who doesn’t
care what you used to produce the document. But for Word’s format such options
are limited. There are many tools that will do certain limited operations; there are a
handful of competing word processors that try to look like Word, which get within
spitting distance of fully supporting Word documents; and that’s about it for handling
Word’s format. I am not aware of a single non-Microsoft product that claims 100%
compatibility with Word’s XML format.

So, as long as you’re using Word’s format, you’re more-or-less stuck using Word.

3.6 Alternatives to Word

At this point, I hope I’ve demonstrated the efficiency gains in having a means of just
writing content, a means of just formatting content, and a standard format linking the
two.

In every case I can think of, the text writing part is in what you’d call a text editor.
As above, there are many that you could choose from. Your OS provides a very basic
one with zero learning curve and few features (Windows=Notepad, MacOS=TextPad,
Unices=pico), but you can find others that are more comfortable to live in for large
projects, like EMACS, vi, Ultraedit, Notepad++, and a wholelot more.

The rest of the story breaks down as to your preferred output and the closely-related
question what standard you’re going to lean on.

32 CHAPTER 3. WHY WORD IS A TERRIBLE PROGRAM

Plain text One option is to not use a formatting system at all. Just open up your
preferred text editor and go to town.

Hemmingway:

• Brief.

• Did not use bullet points.

• Used un-formatted plain text.

But Hemmingway was fortunate enough to live before word processors. Today, an
unadorned block of text is unacceptable, meaning that you will probably have to move
your plain text to some sort of formatted system.

HTML The Web has a text-based standard that can be successfully read by dozens
of web browsers on all types of computer. HTML documents fromthe birth of the web
in the mid-80s can still be read today. Even Word can read HTML.

HTML stands for HyperText Markup Language, and although theHyperText part
is probably not too relevant to the discussion here, the Markup Language part indicates
that this is exactly the sort of semantic language discussedabove. This is especially
true with the advent of Cascading Style Sheets (CSS). CSS lets you define a class, and
describe how that class is to be formatted on the screen. Then, you mark up your text
with class delimiters: this is a header, this is a digression. That is, HTML with CSS is
exactly the sort of semantic markup language that we’re looking for.

Your colleagues will be able to read these documents with their web browser, and
even edit them with software on their computer.

If you don’t want to write the HTML markers yourself, there are a few systems
that will turn easy-to-write plain text into proper HTML. Txt2tags12, markdown13, or
textile14 specify easy plain-text markers, like **boldface**, and then they’ll filter that
into the correct HTML.

LATEX If you are in academia, use LATEX. It was written for academic publishing, and
universities are used to LATEX users. It is designed around semantic markup of articles,
books, and letters, and pegs them perfectly. This document is written in it, and as you
can see, it looks beautiful. Any journal you want your papersto be seen in accept (and
frequently prefer) LATEX-formatted documents, and will provide you with a style sheet
to apply to your document so that you can conform to their rules. Mathematics in Word
looks amateurish, because only 0.02% of Word’s buyers have equations in their papers;
LATEX’s math typesetting makes you look smarter instantly.

It is not a strictly semantic markup, but a bit of a hybrid. I think it does a good job
of combining the two, and if you want stricter semantics, then you are welcome to add
\def s to the top of your documents to effect that.

One thing Word is good at, by the way, is deliberate inconsistency. If you want your
first page in Helvetica, your second in Times, and your third page to be two-column

12http://txt2tags.sourceforge.net/
13http://daringfireball.net/projects/markdown/
14http://www.textism.com/tools/textile/

3.6. ALTERNATIVES TO WORD 33

format, this will be a pain in most semantically-oriented systems. But because Word’s
literal markup has no mechanism to impose consistency on thedocument, inconsistent
formatting is much easier than in LATEX. So there’s my token compliment to Word.

If you are not in academia, then you have a stronger compatibility-with-Word prob-
lem, but consider using LATEX anyway. Because there are reasonably effective (but
imperfect) LATEX-to-HTML translators, you can think of the language as a document-
oriented HTML-producing language, and can then send HTML toyour trapped-in-
Word colleagues. This method will especially benefit those who want to use bibtex or
makeindex to autogenerate the end matter in larger works.

Now, the above methods require work and learning, but I hope by now you agree
that spending time learning something that you will use every day for years is worth
the effort. But, I’m not going to tell you how to go about learning HTML and CSS
markup or which text editor to use. You know how to ask your favorite search engine
for “efficient text editor”, “HTML tutorial” or what have you. Many of these open
standards and tools are entirely free, so there is at least nofinancial cost to downloading
the tools and playing around. Better than the search enginesis to ask your favorite guru
for help; many are happy to take time to help a friend work moreefficiently.

Also, because standard formats are so open, there is probably somebody who has
already fixed every problem you have, but it might be a separate tool. Some text edi-
tors include a spell checker, some expect you to choose an external full-time external
spell checker from the various available options. If you want to see the difference be-
tween your version of the document and the one your colleagueedited, your editor may
include a dedicated diff mode, or you may need a copy of thediff program.

Word Format You may have to use the Word document format at your workplace,
though you can continue to use the structure above: use a plain text editor to write
plain text, perhaps using format markers like those above, then, at the last minute, open
the document in Word. That is, spend the bulk of your weeks of editing and revising
working on content and worry about format and visual appeal only as a final step.

Because of Word’s fundamentally first-person paradigm, youstill need to change
your format markers to real formatting yourself, but (1) Word’s macro feature can help
with this, and (2) you may still save time and effort, becausethe editing features of text
editors can add that much more efficiency.

OpenOffice.org is a word processor initially from Sun Microsystems.[Due to trade-

mark issues, they can’t just call it OpenOffice.]Its key claim to fame is that it can read and write
Microsoft’s document formats very well, meaning that you can interoperate with your
coworkers without their knowing that you aren’t one of them.

Its stylist solves many of Word’s style editor problems, so you may have better suc-
cess with using it semantically. It has a built in bibliography database system. Maybe
Mr. bdamm will get his wish for a basic vi keymap for efficient editing. Its own for-
mat is open, and you can save anything to PDF. So complaints about some details are
alleviated, but it tries to imitate Word to the point of imitating Word’s paradigmatic fail-
ings. The literal markup, intuitive-over-efficient, and one work = one view paradigms

34 CHAPTER 3. WHY WORD IS A TERRIBLE PROGRAM

remain.

3.7 Conclusion

A great many people have spent a great deal of time thinking about how to best edit
and format text, and most of them have come up with solutions that look very, very
different from Word. Part of the reason for this is that the authors of Word were writing
for Aunt Myrtle, while the author of LATEX was writing a package for his own use;
meaning that Word was built around ease of initial use, whileLATEX was built around
efficiency. There is no metaphor that one could make between an HTML document
with a cascading style sheet and a physical paper with text—but this is liberating and
allows for new possibilities and an easier time with formatting.

Perhaps you are stuck with Word, and company policy dictatesthat you write and
maintain long, complex business documents using the same tool Aunt Myrtle uses to
write her thank-you notes. Hopefully this paper has given you some ideas for working
more efficiently: use the style sheet, stick to plain text where possible, maybe get a copy
of OpenOffice.org on the sly for saving to PDF. But hopefully you have the liberty to
take the effort and time to learn some of the other paradigms.It will take you days or
even weeks, your first documents will look amateurish, and over the next several years
of your career you will thank yourself over and over again as you gracefully produce
output with truly efficient tools.

4
YOU AND YOUR COMPUTER

4.1 Moore’s law won’t save you

9 March 2009

First, let’s get Moore’s law straight: According to Gordon Moore himself1, the law
is that “the complexity for minimum component costs has increased at a rate of roughly
a factor of two per year.” The press typically translates that to English to say that every
year you can buy about twice as much memory for your PC for yourdollar.

It’s just about true: measures of the PC memory market’s megabytes per dollar
typically double about every two years.

But that’s not what people want from Moore’s law. They want tosay that their
PCs run faster. Memory is nice—more memory means more windows open in your
browser—but it doesn’t immediately translate to zippier computing in its various forms,
such as more complex processes and on-the-fly behavior that used to be background
behavior.

No, for that, you just need a faster processor, which partly depends on having
cheaper components, and partly on better design.

Here’s what I did for this little demonstration: first, I asked Wikipedia2 for a table
of processors and their posted speeds. Processor speeds aremeasured in millions of
instructions per second—MIPS, though by an instruction we mean a computer instruc-
tion like ‘shift that bit to the left’, and it takes several thousand such instructions to
execute a human instruction like ‘divide 13 by 8’.

Then, I divided each processor’s MIPS by the number of cores in the processor.[I’ll
talk about cores next time if you’re not familiar with them.]Then I used the best score for the year
as the data point to plot.

This is a logarithmic scale, meaning that what looks like a line here is actually
exponential growth, from the Intel 286 in ‘82, at 2.6 MIPS, tothe Intel Core i7 Extreme
965EE, which justifies its absurd name by running 19,095 MIPS.

That’s certainly amazing progress. For much of the period, it’s doubling even faster
than every year. In 1994, the fastest retail chip (Motorola 68060, used in MacIntoshes)
ran at 88 MIPS, the fastest retail chip two years later (IntelPentium Pro) ran at 541
MIPS—more than six times faster in two years.

1http://www.slate.com/id/2080097/
2http://en.wikipedia.org/wiki/Instructions_per_secon d

35

36 CHAPTER 4. YOU AND YOUR COMPUTER

Figure 4.1: Processor speed continues to progress, but not at its former pace

But then things flatten out. The fastest in 2003 was 9,700 MIPS; the fastest in 2008
was 19,095 MIPS, so the doubling of speeds took five years instead of several months.

Caveats I suppose I should mention the trouble with MIPS. First, how do you mea-
sure a processor’s MIPS? Answer: using the processor’s clock to time itself doing
things. So you already have potential for shenanigans. If Motorola’s definition of
‘instruction’ differs from Intel’s, it may be hard to compare MIPS across them.

And there’s more to zippy processing than just summing numbers. Much of the
work is in retrieving data and instructions, which can take alot of time. After all, the
computer’s memory and the processor are often separated byseveral centimeters. More
importantly, there needs to be a component (a bus) doing traffic control and getting the
right bits to the right place. All that takes time. One solution is to have a local space
on the processor itself that keeps copies of what is expectedto be the most useful data,
which is why the typical modern PC processor has a hierarchy of increasingly fast
Level 1, Level 2, and sometimes Level 3 data caches. According to the Slate article
linked from Gordon Moore’s name above, that’s why Figure oneshows a drop in 2009:
Intel decided to spend more transistors on memory and power-saving, and fewer on
fancy calculating tricks. They seem to expect that that’ll make for a more pleasant
computing experience for most users, and I’m willing to believe them.

So there are a lot of ways to make a computer go faster than justmore math per sec-
ond; I could list a dozen of them here, but that might be off topic. This is a blog about
computational statistics, so all of those great advances don’t matter for our purposes as
much as the simple question of how many times the system can make a random draw
from a Normal distribution.

4.2. PARALLEL II 37

I’ll continue on this thread, and add even more caveats, nexttime. But all the
caveats aside, I believe the story from the figure is basically true: the era of immense
speed gains is over, or is at least currently in a lull. We’re certainly progressing, and
next year’s PC will be faster than this year’s, but it won’t beten times faster or even
twice as fast. In the mid 1990s, if a program ran too slowly, wecould just wave it off
and say that next year’s computer will run it just fine, but we can’t do that anymore.

4.2 Parallel II

13 March 2009

In the last episode, I pointed out that every year we get more,smaller transistors,
but it’s harder and harder to invent new tricks to string themtogether to do math faster.

So what’s the easy solution? Instead of ramping up the speed of a processor, just get
two. Thus, the advertised speed gains in the last several years have been via including
two semi-distinct processors in one package—the multi-core chip.

On a larger scale, it’s the same story: much of large-scale computing is really
parallel computing. Systems like the NIH’s Biowulf clusterare a pile of a few hundred
separate computers, interlinked with high-speed networking cable.

Unfortunately, having two processors does not magically make your programs
run twice as fast. Some work is fundamentally sequential, and can’t be split into
simultaneously-running subparts. To give a somewhat time-of-year appropriate ex-
ample, think about filling out federal tax forms. Some parts can be filled out without
regard to others: if you were a multi-core processor, core one could be filling in the
name/address part, core two could be gathering data for the itemized deduction form,
and core three could be totalling up sources of income, all atthe same time and inde-
pendent of each other. But you can’t calculate total taxes owed until you’ve worked
out all your income and deductions. The tax owed process on core four will be sitting
around on its little transistor hands until the others are done.

Then, once all that’s done, you can do your state taxes.
So even for a process as easy and simple as doing your taxes, you’ve already got

some parts that can run in parallel and some that have to be runin sequence (i.e., in
serial). Without looking at the hairy details, it’s hard to say whether having two cores
will double the speed of a program or do absolutely nothing.

So that’s the central problem for today’s story. If we want next year’s program to
run faster than this year’s, we can’t just wait for Intel or AMD to ramp up their MIPS
count, because, as per last episode (p 35), they aren’t really playing that game anymore.
The cheapest expansion is now adding capacity to run parallel processes.

So, how is this transition to parallel computing going to work?
From here, we can work at a few levels, some of which are more amenable to

parallelization than others. At the overall operating system level, for example, things
are smooth and easy: put the drawing program on one core, the spreadsheet on another
core, the general OS on another, and you can expect that theseseparate programs can
do most of their work independently.

38 CHAPTER 4. YOU AND YOUR COMPUTER

Figure 4.2: Parallel threads let you do more, but there can still be bottlenecks.

So for those of you who tend to have a dozen programs up at once (that’s me), or for
those of you using a multi-user system where security dictates that programs generally
shouldn’t be talking to each other at all, more cores equals less gridlock.

Computing platforms But scientific computing tends to be about a single resource-
intensive algorithm. This breaks down into two sub-threads: how well does the single
program you’re using thread itself, and how well does your specific algorithm thread?

First, the platform. There are many anecdotes like the one about Lotus and Mi-
crosoft at the top of the linked page, where a company succeeded by writing software
that was bloated for its time, but two years later ran great. But that was the mid-90s,
which is the steepest range in Figure 1 from last episode.

You’re not writing raw assembly code, which means that you’re using some sort of
platform sitting between you and the cores: maybe a spreadsheet, or a stats package
like Matlab, or a programming language like Python or C. The odds are good that
the platform was originally written in the good ol’ days thatJoel the guru was talking
about, back when parallelization wasn’t a consideration, nor was code that worked a
processor a little too hard.

How easy your life will be depends on the implementers of yourplatform, because
it’s up to them to correctly thread the internals where possible, and hand you tools to
thread your own work. This one is a minefield, and some platforms have much better
threading, both internal and user-side, than others. I won’t name names.

How does the package that’s my fault, Apophenia, fare on threadability? It does
OK. Theapply andmapfamily of functions will look at theapop opts.thread -

4.2. PARALLEL II 39

count variable, and break the process down into the appropriate number of indepen-
dent threads. So in a situation where you have a matrix or vector of a million rows,
each of which can be independently processed, such as calculating a log likelihood,
you can just set a single variable and go. If things get more complex than that, you
may have to start rewriting your code. Given the tax code example above, this is not
so surprising: I as the package author can’t guess what sort of interdependencies your
system may have. But I’ll admit that there are more cases thatcould be handled on the
back end.

Stats methods At the algorithmic level, some types of research do break into parallel
threads more easily, the most obvious being agent-based or simulation-type methods.
Here, you have a few million agents or particles, each of which has set rules for in-
teracting with other agents. The core of the simulation, foreach period, is a loop that
updates the status of each agent. For most situations, with four cores, you can touch
base with the first quarter of your agents on the first core, thesecond quarter on the
second, and so on.

Also easy: drawing random numbers. If I want to create a posterior distribution
via Bayesian updating, I can basically make independent draws from the prior and
independently use them to grow the posterior.[But remember that each thread will need its own

seed for the RNG. The easiest way to do this is to simply give thread zero a seed of 0, thread one a seed of

1, and so on.]

We thus have a specific way in which technology affects how we do research:
agent-based models are going to be cheaper every year, as areother methods that feel
out a model via random draws.

We assume that many data sets[but by no means all!]are produced via a method that
makes each independent of the other. The word ‘independent’means that massive data
sets[e.g., over on the other screen I have a search using 1.48 billion data points]are easily parallelized,
since processing on one point is independent of processing on the others.

Other methods write down a fixed model and search for the optimum. These usually
involve stepping along and trying a sequence of new points. Is this candidate better
than the current? If so, then we’ll use that point until a better one comes along. This is
inherently sequential, so the options for parallelizationare much more limited.

Summary paragraph So the future is in parallelization, which is a somewhat dif-
ferent game from the game we had in the go-faster ‘90s, and that means the winners
in the future may not be the winners today. Many programs (I’mstill not naming
names) have internals that don’t thread well—lots of important global variables, lots of
bottlenecks—and those will seem slower because they can’t farm work out to multiple
processors. Even statistical methods that were popular a decade ago may fall beind
relative to methods like agent-based simulations and thosethat use random draws to
feel out a distribution.

40 CHAPTER 4. YOU AND YOUR COMPUTER

4.3 Programming your blog

20 July 2009

First, back up to the six-part series on Why Word is a TerribleProgram, which you
can read on this here blog, or at fluff.info/terrible3. There’s a PDF version4 linked from
there.

One of the key themes of that series was the importance of having output and for-
matting independent of the content, and you can see by the many forms of the same
text—episodic blog, long essay, paper—that I do practice what I rant.

Here, I’ll mention some technical details of this site that may help you to shunt
around your own writing. It’s not just me talking about me, but using this site as an
example of how the Web is assembled. The summary sentence: Web software was
written by programmers, so it pays to think like a programmerwhen putting together
beautiful Web sites.

Content and its management Thecontent management systemis sold to people as
blogging softwareand to businesses via the value-add acronymCMS. It’s all the same:
these systems take the principles of structured code and apply it to human-oriented text.

In well-structured code, you first produce a set of small, modular functions. One
function reads input, the next searches any text for a given word, another puts any blob
of text on the screeen in blue, and given all that, it’s trivial to string together these three
functions to write a new function to display the results of a lookup ofSteven.

Blogging software[I can’t stand the managementspeak name]asks you to turn your web-
page into small units, and then puts those units together foryou. You provide a style
sheet, some text for the sidebar, a series of blog entries, and the software produces
pages accordingly. If it’s sold to a business, then employees, product descriptions, and
so on are also reduced to a single unit of content each.

Now that the computer has uniform, modular blocks of content, it can string them
together via master templates (i.e., the parent functions).

In that respect, CMSes are not particularly high tech, at all. There are many im-
portant bells and whistles to be had (comment forms, search boxes, spam filtering), but
the core of it is simply specifying a format for blocks of content and helping you paste
them together via a template.

This here blog The needs of this blog are not great. For the most part, every page
has three blocks of content: The header plus sidebar (which are a unit), the blog en-
try/entries, the comment form.

You’ll notice that the header and sidebar change depending on the page. This is
done by the web server, Apache, which has a very standard Server Side Include (SSI)
plugin that could potentially serve as blogging software inits own right. Here’s the
actual text ofabout the author.html (minus the actual content), with discussion
to follow:

3http://fluff.info/terrible
4http://fluff.info/terrible/terrible.pdf

4.3. PROGRAMMING YOUR BLOG 41

<!--#set var="isabout" value="true" -->
<!--#set var="isauthor" value="true" -->
<!--#include file="head.html" -->

<div id="maintext">
<div id="content">

<h3>About the author</h3>
<p> The actual content goes here. </p>

</div>
</div>
</body></html>

The interesting part here is the first three lines, which are directives to the SSI. I
can think of no better evidence for my thesis that web software is written by traditional
programmers in a relatively traditional mindset than the format of these SSI directives.
Compare the web server’s#include file="head.html" with the C preproces-
sor’s#include "head.h" .

You can picture the thought process of the person who first wrote the SSI package:
‘Gee, when I write code, I have this nice C preprocessor that lets me include files. I’d
like to do that when I post stuff online, but HTML doesn’t let me. Maybe I should
write a preprocessor for the Web. After all, unlike those people who just post Web
pages about ponies, I have the prerequisites to actually write new software, which the
pony-posters will eventually be forced to use.’

head.html has the usual code which you can almost inspect via your browser’s
view sourceoption for this page (The web page version, I mean). But you won’t quite
see what I wrote because the server did some editing using theabove variables. Here’s
the code for a single button in the bar across the top of the screen:

<a href="http://modelingwithdata.org/about_the_b ook.html"
<!--#if expr="${isabout}" -->class="active"<!--#endif -->
>About the Book

The variable set on the page itself advises the system to addclass="active"
if the variableisabout is true. Otherwise, that blob of text doesn’t appear. In coder-
speak, this is the most natural thing in the world: thehead.html macro has some
if-then statements that change output depending on the input variables.

Getting back to the structure of this site, there are still some blog-type jobs to
be done, like producing archives, the previous/next links,the search box, the main
page with the amalgam of several subpages. I’m using a lightly hacked version of
Greymatter, which is one of the original blogging systems, and is so unsupported that
it seems that the author has disappeared from the ‘Net.5

But the demands are so simple that it keeps working anyway. Blocks of text are as
just as easy to paste together almost a decade later.

5http://compliticytheory.vox.com/library/post/noah-g rey-is-leaving-the-internet.
html

42 CHAPTER 4. YOU AND YOUR COMPUTER

I’d hacked it to use tags, but realized that I never use the tags on anybody else’s
blogs, and stats to which I have access indicate limited use of the tag pages. The search
box and the index of titles seems to be preferred.

The content itself The other hack is about how I write the actual content. All blog-
ging software seems to have some form of pidgin HTML that letsyou set boldface and
easily add links, but it’s never quite sufficient out of the box, especially for technical
prose like the stuff on this site.

Raw HTML is a pain to write by hand. (Almost) every tag needs anend tag, the
syntax for many details like linking are verbose, you have tomark paragraph breaks,
and so on. Worse are the XML variants, which are virtually impossible to get right
when writing by hand.

‘By hand’, of course, is a relative term. After all, I’m usinga text editor, not a quill,
and it has various conveniences. There are HTML- or XML-oriented text editors that
take care of all the above garbage for you. My own preference is to do things in a more
stripped-down, no-need-for-tools manner.

So I use LATEX. It can be written without pain in any text editor, and as a bonus, can
be compiled on any system to several types of output. That’s how you get the PDF and
the HTML version of every web page. If you’re not a fan of LATEX, see the prior entry
(p ??) and its comments for other systems that produce HTML with less hassle.

All that said, the process of producing several versions of ablock of content is a
repetitive script. As you can imagine, every step but the first is basically automatic:

• Write actual content with LATEX tags, but no head.

• Paste on a head (cat htmlhead content.tex > newblog.tex)

• Have sed do some little search/replaces to get some details down

• latex2html newblog.tex

• Copy the HTML to the Web; notify Greymatter that it needs to make a new page
using the standard template and the new content

• Repeat withtexhead instead ofhtmlhead to produce the PDF version

• Add a reference in the book version; recompile and reship

Once you’ve written the actual content, and have headers specifying formatting, the
rest is just logistics.

What’s with that last item? If you were reading this online, I’d be pointing you
to the link to the compilation. There are several reasons forthis: first, you’ve surely
noticed that several of these entries are a coherent thread,serialized over several entries.
It ain’t Dickens, but you might want to have the whole thing inone place. On my side,
thinking about how today’s stupid little post fits in to a larger scheme forces me out
of bad blogging habits like repetitive prose or stream-of-consciousness writing that
doesn’t go anywhere.

4.4. THE SCHISM, OR WHY C AND C++ ARE DIFFERENT 43

Also, a lot of the world is still not wired, so there’s a place for paper. And darn it,
the format of paper looks nice; given a choice between reading an article on screen and
via PDF (a choice many journal web sites offer), I always go for the PDF. I wouldlove
to see other blogs offer PDF editions and compilations.

But why rationalize. It’s there, and after the setup of treating my content like code,
took very little extra effort to implement.

4.4 The schism, or why C and C++ are different

6 May 2006
Those of you who actually read my posts about efficient computing, rather than just
going to read the comics at the first sight of the word ‘computing’, may by now have
noticed a few patterns.

The most basic is that standards are important. I know this sounds obvious to you,
but if it’s so obvious, why do people get it wrong so darn often. Why are people
constantly modifying and violating standards that work just fine?

I know many of you have suspected this for a while, but let me state it loud and
clear: I am conservative. Rabidly conservative. I think that people need to have a
really good reason for not conforming to technical standards, and I think most people
don’t—they just use the shiniest thing available. A large amount of my writing on
technical matters is simply pointing out that well-thought-out technical standards tend
to work better than the newest and shiniest, and that the value of stability often more
than makes up for inevitable flaws in the standards. Even my work on patents is aimed
at making sure that open standards remain open and free to implement.

I originally tried to make this into an essay about both computing standards and
general customs, but over the course of writing it, I came to realize that the two are
fundamentally different. If somebody doesn’t quite conform to your human customs—
if they use the wrong fork or speak non-native English or wearratty t-shirts to the
office—then the person will be funny or diverse or annoying orjust normal. Mean-
while, if computing standards aren’t followed—if somebodygets sick of C’s array no-
tation,array[i][j] , and decides it looks nicer asarray[i, j] —then their writ-
ing is 100% gibberish and they might as well be speaking Hinduto an English-speaker.
Standards-breaking in social settings can be fun; standards-breaking in computing is
just breaking things.

So although I usually try to put something in the technical essays that will be inter-
esting to those who could care less about machinery, I don’t think any of the below is
truly applicable to social norms. Or you can read on and decide for yourself.

[Nor is this a comprehensive essay on standards drift and revolution, because that would take a volume

or two. Just file this one as assorted notes on one question with an interesting proposed solution: what to do

with all those people who keep trying to revise and update andmodify the standards?]

Schisms Intuitively, there’s the English-teacher approach to retaining a standard,
where we force everybody to stay in line with the basic standard. When you go home
to write your pals, your English teacher instructed you, be sure to use perfect grammar
at all times.

44 CHAPTER 4. YOU AND YOUR COMPUTER

But another approach is to let the whippersnappers fork. On the face of it, it may
seem contradictory to think that splitting a standard in half would somehow make it
purer, but under the right conditions, giving those who wantto experiment room to do
so can be the best approach.

For any technological realm, you’ve got one set of people whojust want features—
lots and lots of features, enough to wallow in like they’re a bed of slightly moist hun-
dred dollar bills—and you’ve got another team that wants fewer moving parts, and
takes care to maintain discipline and stick to the existing norms. We can bind the two
teams together, in which case they will constantly be fighting over little modifications
to the system and neither team will be happy. That’s what happens with English. Or
you can have the schism.

Allow me to cut and paste from Amazon:

The C Programming Language by Brian W. Kernighan, Dennis M. Ritchie
274 pages
Publisher: Prentice Hall PTR; 2nd edition (March 22, 1988)
Amazon.com Sales Rank, paperback: #4,457
Amazon.com Sales Rank, hardcover: #445,546

First edition 228pp, 1978:
Amazon.com Sales Rank, paperback: #60,113

The C++ Programming Language by Bjarne Stroustrup
911 pages
Publisher: Addison-Wesley Professional; 3rd edition (February 15, 2000)
Amazon.com Sales Rank, paperback: #11,797
Amazon.com Sales Rank, hardcover: #6,215

First edition, 327pp.
Amazon.com Sales Rank, paperback: #1,243,918

Things we conclude: C++ is much more complex than C—274pp v 911pp. C++
keeps evolving: from 1986 to 2000, the book has had three editions, over which it has
almost tripled in size. People are still buying the 1978 edition of K&R C because it’s
still correct; the first edition of Stroustrup is so incompatible with current C++ that
people can’t give it away. Finally, Prentice-Hallreally needs to lower the price on the
hardcover edition of K&R. I mean,my bookis selling better than their hardcover, which
ain’t right.

Meanwhile, C is as stable as can be. Cyndi Lauper has put out seven albums since
K&R C came out. The changes from first to 2nd ed. of K&R are pretty small—literally,
they’re a fine print appendix. And, I contend here, it owes itsimmense stability to
Bjarne Stroustrup. With Bjarne putting out a new version of C++ every few years that
frolics along with still more features, Prentice-Hall is free to reprint the same version
of the C book without people whinging about how it’s missing discussion of mutable
virtual object templates. The guys who want simplicity and stability buy K&R and the
guys who want niftiness and fun features buy Stroustrup and everybody’s happy.

The other technical standard I use heavily is TEX, and I’d been meaning, for the
sake of full disclosure, to give a critique of TEX comparable to this here critique of

4.4. THE SCHISM, OR WHY C AND C++ ARE DIFFERENT 45

Word6 Fortunately, Mr. Nelson Beebe already did it for me, in this (PDF) essay entitled
25 Years of TeX and Metafont7. The article alludes to exactly the sort of schism in
typesetting as in general programming: you’ve got the people who are totally ignorant
of standards and just want the shiniest new thing, and the people who built a standard
system that has been stable for the better part of 25 years. Since he’s on the standards-
oriented team, he gives many examples of how such stability has led to large-scale
projects that have significantly helped humanity.

His discussion of its limitations is interesting because there really are features that
need to be added to TEX—notably, better support for non-European languages and
easier extensibility. But “TEX is quite possibly the most stable and reliable software
product of any substantial complexity that has every been written by a human pro-
grammer.” (p 15) Changing a code base that hasn’t seen a bug infifteen years is not to
be taken lightly, and may never happen. Instead, we can expect to see a schism.

Evolution In that 1986 edition of the C++ book, Bjarne wrote this: “since [two stan-
dards] will be used on the same systems by the same people for years, the differences
should be either very large or very small to minimize mistakes and confusion.” I’m
going to call this Bjarne’s principle.

When you read about the raging debate between Blu-ray and HD DVD (I’m rooting
for the one that isn’t an acronym), don’t think ‘now I have to worry about all my stuff
being obsolete’. Thank those guys for distracting attention from DVD, which is a nice,
stable format that hasn’t changed in a decade, ensuring thatyour stuff has not become
obsolete. People have made haphazard attempts to revise theCD format, but thanks to
distractions like the MiniDisc and even DVD, your copy of Cyndi Lauper’s first album
is still the cutting-edge CD standard (specified in The Red Book, 1980). Attempts to
incrementally tweak the CD standard never took off. Remember CD+G? If so, you’re
the only one.

So this is how conservatives evolve. Not from clean standards to floundering in pits
of features, but revolutionary breaks from old clean standards to new clean standards.
The feature pits are just distractions.

The process of evolution via incremental fixes directly breaks Bjarne’s principle,
because you get a stream of similar standards that are easilyconfused and comin-
gled. Corporate-sponsored standards often suffer this failing (but not always), because
setting standards that last for two decades and selling frequent updates are hard to
reconcile. One company spent a while there naming its document standards with a
year—standard ’98, standard 2000, et cetera—which in my book means none of the
formats are actually standard.

The only way to evolve while conforming to Bjarne’s principle is to is to ride a
system until it really doesn’t do what you need anymore, and then revolt, building a
new one that is clearly distinguished from the old, as we saw with DVD’s overthrow of
CD because CDs truly can not store movies, orΩ’s eventual overthrow of TEX because
TEX truly can not typeset Tamil.

The trick is to know when to revolt. When is a new feature so valuable that the old

6http://fluff.info/terrible
7http://www.tug.org/TUGboat/Articles/tb25-1/beebe-20 03keynote.pdf

46 CHAPTER 4. YOU AND YOUR COMPUTER

system should be abandoned? Many a dissertation has been written on this one, and I
ain’t gonna answer it here. But for well-thought-out technical standards, it’s much later
than you think, as demonstrated by the active 25-year old standards above.

Back to C vs C++ I copied Bjarne’s principle from the first edition of his C++ book,
so it comes as no surprise that in the mid-80s, C++ made an effort to conform to
Bjarne’s principle. In the present day, it just doesn’t, andthe confusion lies in thinking
that it still does.

Even in the first edition, there are incompatibilities between C and the new C++,
but just a page or so in the appendix. The author explicitly states (1st ed., p 5) that
he’s walking into a world of C programmers and C code everywhere, so retaining
compatibility is sensible marketing and efficient.

But all those enthusiastically added features, that puffedthe third edition up to nine
hundred pages, each break a little something in raw C. To givea simple example, I use
the variable nametemplate a few times, and a user wrote me to tell me that his C++
compiler broke on that, because in C++template is a reserved keyword. Bjarne’s
principle dies another little death.

On the other side, the ISO added a few features to C a decade ago. The most notable
for me is designated initializers; I’ve written several entries here about how much you
can get out of this syntactic tweak. However, C++ has no intention of supporting
them. This author8 feels the rationale paper for not using designated initializers gives
“arguments that aren’t very convincing”, and I’d agree.

Therestrict keyword, also added to C in 1999, does a lot to get code running
faster. The authors of C++ have to date rejected the idea of supporting it. But because
it’s just optimization advice that can be taken or left, hereis a valid rule for the parsing
of this keyword: replace all instances ofrestrict with a blank space. With no
serious technological reason to excluderestrict , we’re left with just social and
æsthetic reasons, and in the subjective balancing of issues, C compatibility and Bjarne’s
principle was clearly a low priority.

On a positive note, the last revision of C took a number of ideas from C++, after
they’d been tested in C++’s feature pit for a few years, including the in-line comments
with // [which I use constantly]and theinline keyword[which I never use because the compiler

will inline functions for you where appropriate]. But in all cases, the rationale was because
these features seemed useful and well-tested, not that adopting them would reduce the
distance between the two languages.

All of these examples are to show you that modern C++ has basically thrown out
Bjarne’s principle. Many people still write “C/C++”, thinking of them as the same
language, comfortably presuming that a C program will compile in a C++ compiler.
But that hasn’t been really true for maybe fifteen years now. Better would be to just
acknowledge the schism. Let them drift further, because things can only get better
once the pair are past confusion-maximizing near-similarity, leaving one well-set in its
stability and one free to pursue novelty.

8http://www.informit.com/guides/content.aspx?g=cplus plus&seqNum=325

4.5. THE GREAT PACKAGING PROBLEM–THE EASY PART 47

4.5 The great packaging problem–the easy part

16 May 2011

A library is a collection of functions and data structures. Given a setof libraries
installed in one place, functions in one library can readilycall functions or structures
in another library. For example, a textbook recipe organizing program could use a
textbook XML library to save the recipes, so the author of therecipe program would
not rewrite any XML parsing routines, but just call them fromthe other library. In such
a setup, sets of functions will be organized into libraries,for the convenience of users,
who can pick those that they need.

[I’ll lean on library for now, though many systems call them packages, Ruby calls them gems, &c.]

The problem statement: how does a function in one library finda function in an-
other? This remains one of the great unsolved problems of modern computing. It
breaks down into two problems.

• Local: given a program installed on the hard drive, how does one find and load
the requisite file?

• Global: given all the computers of the world, how does one finda needed library?

Next time, I’ll be writing about the global problem, and discussing why it’s so
broken; as a warm-up, this time I’m starting with the local problem to show you just
how solved the local problem is. If you’ve never put thought into it, this may also help
you with debugging next time an installation fails.

It is solved in the same manner on every platform I’ve ever known: when a library
is needed, a small set of directories are exhaustively checked for libraries. The im-
plementation is even pretty similar in all cases, wherein anenvironment variable, like
R LIBS, LD LIBRARY PATH, PERLLIB, CLASSPATH, lists those directories that
should be checked, and when a new library gets called in by a running program, the
system checks each directory on the path in turn. If you’re using a system with some
sort of global registry (which is effectively a gigantic pile of environment variables),
then the path may be listed there.[Since this is a web site forModeling with Data, let me mention

that Appendix A has more on getting and setting paths.]

The problem of installing a new library on an unknown system becomes the prob-
lem of knowing exactly where everything is. If a file needs to be generated, what
compiler is available; if there are files that need to be modified, where are they; what is
the right libpath to use for the given system?

A few libpaths are handed to you, like the ones that actully have an environ-
ment variable set. Or you could have the platform self-report its environment, like
a newlang --get environment command whose output the script could then
use, or you could force the user to have an environment variable on hand, or you could
use a local registry, or depend on the Linux Standard Base (aneffort to define the right
paths once and for all), or use Autoconf’s voluminous hard-coded knowledge about
system-specific details, or just install in /usr/local/share no matter what. Everybody
has their custom, due to differing opinions about what is technically optimal and his-

48 CHAPTER 4. YOU AND YOUR COMPUTER

torical glitches. But once you’ve found the right way to query the local system for
where everything is, you’ll have no problem putting everything in its right place.

GNU autotools asks the dependent library author for the nameof the dependent-
upon library, and a sample function. It then produces a smallprogram—basically just

int main() {your function(); }
—and then compiles it viagcc -lyour libname sample program.c . If

that works, that we haven’t just asserted that the library issomewhere on the libpath, but
have actually tested that the library can be loaded and used,which is pretty cool. The
compiler will search its own libpath, so Autotools is implicitly searching the libpath by
free riding on another system that already does so.

So that’s the whole local library use problem:

• Search the libpath.

• If you found a match, optionally test that it’s valid, or justload it and hope it
doesn’t break.

• If it isn’t found, then it’s on to the global problem—search the planet Earth for
the library, and install it on the right path.

For installing a new system, we need to preface this with an initial step where we
work out what the local paths are. There are diverse solutions to that step, but just read
the platform’s manual and you’ll be fine. Next time, I’ll cover that last step of searching
for and installing a library or package from somewhere else.

4.6 The great packaging problem—the hard part

22 May 2011
Last time I (p??) discussed the problem of how a package, library, or whatever set of
files on a given system gets installed and used. The gist is that you need to know where
everything goes, via a number of mechanisms, which is invariably expressed as a set of
directories to search—a path. There are a few differences due to technical details and
historical glitches, but no need to rehash those.

But if the library isn’t on the system at all, then it’s on to the global problem of
finding a package or library from out in the world and installing it in the right place,
which turns out to be much more difficult. Technically, it doesn’t raise any issues more
difficut than the local problem, but the political problems are more complex.

I’ll start with the decentralized solution, which will naturally lead in to the central-
ized.

In a decentralized world, when something is missing, you tell the user, and the user
goes out and gets the item and installs it. We consider this tobe lacking. Modern
users are allowed to be lazy, and cuss at the screen and mumble‘if you know I need a
package, why don’t you just get it for me instead of telling meto do the work.’

You could actually write into the install script that if a library is missing, run a
quick script to download and install, like
wget http://sourceforge.net/libwhatever;
./configure;

4.6. THE GREAT PACKAGING PROBLEM—THE HARD PART 49

make;
make install .
Consensus seems to be that this is a bit ad hoc, and potentially fragile, because the
dependency is not just on the library, but on the unknown repository that holds the
library. If the library to be downloaded releases a new version, will the makefile pull
the right version? If the library to be downloaded has its owndependency issues, will
users have a clue as to which step in the dependency chain theyhave to focus on to get
things running again?

Which leads us to a system that can query a centralized repository holding a registry
of packages, each of which knows exactly what other packagesit depends upon.

By the way, I am referring to both package managers for individual languages or
coding platforms, like Perl’s CPAN, R’s corresponding CRAN, Ruby’s gem system,
&c; and package managers for entire systems, like Linux distributions such as RPM,
Debian, Pacman, Portage, or any of the other several dozen onWikipedia’s list9. The
general package managers do not really care what is in the package. Each package
is expected to include an install script that finds the right libpath or works whatever
magic is needed to put things in the right place. Conversely,a language-specific library
manager can get all the language-specific details right. R has the most stringent pack-
age management I’ve seen, requiring that package authors document every user-visible
function, include tests, et cetera.

Say that I just wrote a module in Perl, and it calls out to a C library, so the Perl
package will have to check for the library and install it if possible (which might mean
installing sub-dependencies). Ideally, it would work out the right way to do this for a
Debian system, a Red Hat system, OS X, and all the others. After all, the procedure
in all cases is to find the right paths and programs, then put them all together in the
same sequence, using a standard shell script. But what I describe here is absolutely
impossible, several times over: your Perl package manager doesn’t know how to install
a C library, your C library probably knows how to work out the paths it needs but not
how to resolve dependencies; you’ll need to write a new and potentially painful new
pakage manifest for every operating system variant.

Let me waste a paragraph stressing how common cross-platform writing is (and
should be). Every scripting language I’ve ever seen has a throwaway or two in the
documentation of the formif you get into trouble, just code your procedure in C.So
at the least, it makes sense to have a mechanism to depend on C libraries. In the
communist world, C libraries have a standard means of installation on all systems (the
miracle of modern science that is Autotools), so let’s not pretend that there are no
standards to rely upon. Or what if you want to use TCL/TK for a quick window front-
end, or read in and clean data via Perl and then make pretty graphs with R?

For that Perl module, you could start with the general package manager, and then
the general install script will call the language-specific install script. Conversely, you
could start with the language-specific package manager, andthen write dummy pack-
ages for the off-language dependencies, like a Perl module with zero lines of Perl code
but a full C library hidden in a subdirectory.

9http://en.wikipedia.org/wiki/List_of_software_packa ge_management_
systems

50 CHAPTER 4. YOU AND YOUR COMPUTER

But at this point, things are a mess. I’ve actually made some efforts to use many
of the above package managers (Apt, RPM, whatever R’s is called, Python’s distutils),
and prepping the metadata for three out of four of them them were a real pain. For the
system to be robust, the author has to fill out a lot of forms in just the right way, and if
there’s a central repository, there’s the social problem ofconvincing a gatekeeper that
this isn’t just a homebrew project and that the forms were filled out correctly. I made
the blithe suggestion in the last paragraph that if you need to do cross-silo installation,
just write two package manager specs, but I admit that that’slike suggesting that if
you’re into two people, then you can simplify your life by just dating them both at the
same time.

Calculating dependencies and knowing the URL to pull from, querying the system
to get the right paths and commands, writing a shell script that uses the gathered info to
do the install—these are all closer to technical annoyancesthan the Great Engineering
Challenges of our time. So what makes things so darn difficult?

Politics At this point, you may have noticed just how not-Internet this system is. It’s
centralized. There’s typically a gatekeeper at the centralrepository, who may impose
lots of rules. Pretend you got a letter from Steve Jobs, referring to the iTunes Music
Store, the archetype of the centrally-controlled system.

Dear author:

I have written a somewhat popular platform, which you have used and for
which you have written useful software. That platform includes a distribu-
tion system, which is included by default with every copy of my platform.
So if your program is in my registry, then every user will haveeasy access
to your work.

When I put your program in my registry, I will check for dependencies,
but all dependencies must be in my registry. If you need an XML parser,
and don’t find one in my registry, you will have to fill in that hole in my
registry before I distribute your code. It is important thatI maintain party
cohesion, and packages that depend upon commonly-installed libraries us-
ing other platforms will break the user’s impression that mine is the One
True Platform.

I reserve the right to impose coding standards of my choice; for exam-
ple, all programs loaded onto an iPhone must do garbage collection in
the manner the Apple specifies, and may not depend on any of thestill-
running and still-debugged libraries originally written in FORTRAN. Of
course, my automated tests can’t really detect software quality, just adher-
ence to our rules, so the quality bar is really sort of vacuous. Nonetheless,
I’m going to bill my repository asComprehensive, so if you don’t conform
to my standards, you’ll look like an idiot.

Yours,

The Author of the One True Platform

4.6. THE GREAT PACKAGING PROBLEM—THE HARD PART 51

I doubt that any one language’s package manager or the maintainer of any one
platform fully fits my fictional stereotype (maybe not even Apple). But the incentives
are there for somebody promoting a distro or a language or other platform to build a
silo, and offer access only to those who agree to stay within the silo’s walls.

Silos bother me, whether they are for sinister purposes or just lazy writing that built
obstacles without thinking. I don’t need yet another reasonfor somebody to tell me that
their language is so cool it’s absolutely impossible for them to use any other.

Centralization isn’t inevitable. To pull an example from a nearby issue, revision
control systems are another great unsolved problem in computing, with dozens of com-
peting systems. In the last few years, there’s been a push toward decentralized RCSes
that look more like the Internet at large and less like the iTunes Music Store. Like a
peer-to-peer file sharing system, each repository of the code history in a network has
met at least one other (to get the code to begin with), but effort is made to not allow
one to proclaim itself central and canonical. If the CIA tookdown Linus Torvalds and
his favorite server, the code base and version history of Linux would chug along via all
the other repositories with an equal claim to centrality. Similarly, a repository system
can do more or less to promote decentralized package distribution.

There are programs like alien10 that will do an OK job of translating the metadata
from an RPM-formtted package into metadata for a Debian package, or vice versa.11

There’s nothing keeping the users of R or Perl from using a general package manager
and writing install hooks to run tests and documentation checks. If the R and Perl
people were using the same general package management system, there’d be nothing
keeping the CRAN from depending on CPAN packages or Portage source packages.

The signs of a technical problem are different from the signsof a political problem.
The technical problem might involve data structures that are difficult to translate or
procedures that undo each other, but we’ve got none of that here. The reasons why we
have so many entirely incompatible systems, the reasons we’re collectively in package
manager purgatory and can’t cross platforms easily, are political: developers of a plat-
form want to dictate what is an acceptable extension, competitors have decided that it’s
more beneficial to build silos around their own systems than to build bridges, and for
the minor technial glitches—¿libc-devel or dev-libc?—everybody is just waiting for
somebody else to do the grunt work of making things compatible.

The quickest way to bolt on a package manager to a new programming language
would be to instruct the package author to use an existing general build system, with
a few language-specific hooks provided by the author if need be. But that would give
up any hope of siloing authors of new packages, and some levelof (mostly political,
to a small extent technical) independence. The language maintainers don’t get to be
gatekeepers any more and can’t reject packages that don’t live up to their technical,
æsthetic, or political ideals. Package authors and users would benefit from easier and
more connected package management systems, but the users aren’t the ones who design

10http://kitenet.net/ ˜ joey/code/alien/
11As I understand it—and I would love somebody to correct me on this—alien has trouble translating

dependencies. Part of this is that package names change across systems: the GSL’s development package
may be libgsl0-dev, libgsl-devel, dev-libgsl, or if the system weren’t so pedantic, the dev package would
be just a part of libgsl. Differences in naming are really theperfect example of a social problem blocking
technical solutions.

52 CHAPTER 4. YOU AND YOUR COMPUTER

the system.

5
STATISTICS, SORT OF

BLAIRBLAIR

5.1 Data is typically not a plural

26 June 2008
BLAIRBLAIR [Today’s episode is a guest blog by Mr. BK of Baltimore, MD]MODELMODEL

5.2 Data is typically not a plural

10 June 2009

When we learned all those darn grammatical exceptions, we were usually told that
they came about in some distant past, due to some arcane relicof old Dutch or some-
thing. But here in the new millennium, we have the chance to witness the development
of a new grammatical exception.

If this sounds boring, bear with me: by the end of the column, about 360,000 people
will die over this corner of grammar.

See, English has the concept of a collective singular, wherein a group of elements
is treated as a unit: e.g.,that clump of birds is moving pretty fast. The new exception
is that this concept can apply to any group of anythingexcept data. The data shows a
steep slopeis considered incorrect by some, who preferthe data show a steep slope.

If you are one of the people who think thatthe data isis wrong, please stop.

Some examples First, let us imagine a world where English grammar would require
all groups to remain plural:
1. The agenda are on the table.
2. The trivia in this book are silly.
3. Steely Dan are playing at the pavillion.
4. The NIH owe me $12,000.
5. The U.S.A. are in a recession.

Notes:
1. Agendum/agenda has the same Latin-based form as datum/data. Yet I have never
heard a person who usesthe data areusethe agenda are.

53

54 CHAPTER 5. STATISTICS, SORT OF

2. Sentence #2 is the only one that is actually incorrect, dueto the odd history
of trivia. Here’s the definition oftrivium from the OED: in the Middle Ages, the
lower division of the seven liberal arts, comprising grammar, rhetoric, and logic. That
is, trivium was itself once a collective singular. The meaning evolved, and we can
now group together a collective unit of facts about the trivium into bundles that are
collectively a unit: trivia. In the present day,trivia is always a singular, becausetrivium
refers not to individual facts but to the above fields of study. The singular oftrivia is
basically lost.[And since I know you’re gnawing to know, the other part of theseven liberal arts is the

quadrivium: “the four mathematical sciences, arithmetic,geometry, astronomy, and music”].
3. Bands and orchestras are a great example of the whole beingmore than its parts.
4. The acronym in number 4 expands toNational Institutes of Health, and they do

continue to “lose” my invoices as quickly as I can send them. Acronyms are a great
way to cohere a plural into a singular.

5. The 360,000 casualties mentioned above come from #5: the question of whether
the U.S.A. areor the U.S.A. isis the difference between a Confederacy and a Fed-
eration, and was basically resolved by a civil war. People fought and died over the
question of whether a set of elements should be taken as separate elements or a unit,
just a box of parts or a coherent whole.

More mundane examples still reveal different points of view. Both the flock of
birds are flyingandthe flock of birds is flyingare correct, but one or the other probably
sounds off to you. Maybe you flinched when I wroteagendum/agenda hasat bullet
point one above. Here, grammar is a window to the soul. I thinkthat some people
generally lean toward seeing the parts and some generally lean toward seeing the whole.
[Linguist readers are welcome to leave citations regardingmy claim in the comments.]In one case this
difference in thinking led to a war, but in most cases it seemsto just lead to people
correcting other folks’ grammar when the grammar really just reflects a difference in
perception.

[Oh, andhair is an interesting case: there’s a formyour hairsfor a set of items that is not to be taken as

a whole, andyour hairreferring to the whole mop on your head. It’d be great if we’d evolved more pairs like

that, like maybedatumsanddata.]

The math section Let’s get back todata, which is in the mathematical realm. Pre-
cision matters in math, and grammar needs to follow along. The sentencethat set of
numbers is primeis incoherent: only the individual numbers can be prime; a set can’t
be prime. The sentencethat set of numbers are dense1 is incoherent: only the set as a
whole can be dense; individual numbers are not dense. We needboththe set isandthe
set arein our grammar.

Similarly with data: sometimes we are looking at the gestalt, such as statistic like
the estimates of a regression parameter; sometimes we are looking at the individual
elements, such as when we point out that all the numbers are positive. The data are a
matrix is incoherent: on the left-hand side of theare, we refer to a plural, while on the
right-hand side, we’re stating a singular; the sentence reduces toa plural = a singular.
It’s a perfect demonstration that the left-hand side is meant to be taken as a collective

1Dense: between any two elements of a set, there is another element of a set. E.g., between the real
number 1.1 and the real number 1.2, there is 1.15.

5.3. THE PERCEPTION OF CAUSATION 55

singular, as expressed perfectly bythe data is a matrix.
Efforts have been made to base the entirety of mathematics onsets of objects; in a

world where collections are central, we desperately need both the set of items isand
the set of items areto function;the data is/the data areis just a synonym.

Why the new exception? [Disclaimer to Ms. LDWH of Princeton, PA: the following paragraph

does not apply to you. I know you’re just following the darn style guide.]

So why arethe agenda isandthe set of elements isOK, while the data isis now
considered to be wrong? I can’t put this politely, but I get the vibe that the people who
correctthe data isare just trying to indicate smartness—and failing. The process is
perfect for the person working too hard at smart: (1) Identify trivia: data is actually a
plural, and has a Latin-sounding singular. (2) Payoff: feelsmarter for knowing trivia.
(3) Find somebody who seems to not seem to know your fact. (4) Big payoff: correct
them!

[Another of my pet peeves, which I’ve mentioned before, fits the same form: the use ofmethodology

(the study of methods) as a synonym formethod. Look at me! I used a five-syllable word! I think it’s a

synonym for a two syllable word, but I chose to use the longer word anyway!]

But, as above, there are times whendatais a pile of parts, and times when it has
meaning only as a whole. In all sorts of situations, our brains are wired to sometimes
see the parts and sometimes the whole, and there’s no point starting wars with people
who see things differently.

5.3 The perception of causation

28 November 2003

So here’s the structure of just about every academic paper: author asks a question
in the way of ‘hey, I wonder if A causes B?’ and then goes out andgathers some data,
and then checks to see whether the data verifies that A and B arerelated. The rest of
today’s pontifications will pile on caveats to this simple structure.

Statistics only disprove The first is that statistical methods on the observation side
is aimed only at falsifying claims, not verifying them. The correct wording of a typical
conclusion would be: ‘The study failed to reject the possibility that A and B are related.’
The media will clean this sentence up to say, ‘The study founda link between A and
B.’ More forceful, less passive, less true.

Causation Next, there are two motivations for asking about A and B: observation
and persuasion. Our academics like to imply that they’re just innocently inquiring
about the world around them, but people get married to their ideas quickly—especially
in the social sciences, where there’s often a gut political belief that the academic would
like to back up. Further, the goal of all persuasive essays isnot to say that A and B
are linked, but that A causes B. We readers don’t entirely mind our academics writing
causal-persuasion-oriented papers instead of observational papers, because causation
is interesting and observation alone isn’t.

56 CHAPTER 5. STATISTICS, SORT OF

If I had to point to one thing that distinguishes humans from stuff, it’s the perception
of causality. It is impossible for humans to think without using a causal framework,
and it’s impossible for machines to think causally. You can’t do a statistical derivation
to prove objectively that one thing causes another, since correlation is never causa-
tion. Further, if you have two things which we’ve decided cause another, you can’t do
anything to show that thing one was more of a cause than thing two, even though we
humans often care deeply about that very question.

An academic paper really, really is an artistic expression—even more than painting
or self-immolating performance art—because the paper’s intent is to make the reader
perceive the causal functioning of the world (that inherently human thing) as the author
perceives it. The funny thing is that the persuasive supportfor the communication of
perception lies in statistics, which can provide evidence for or against causation, but
not causation itself. You get papers that are 100% machinery, but whose intent (if they
haven’t forgotten it) is to persuade the reader.

Linear models The primary tool for the testing of an A-is-related-to-B hypothesis is
the linear regression, which is based on lots of assumptionsthat nobody ever checks.
Notably, most of these regressions are about nonlinear systems. I mean, really guys: it’s
a linear regression because all of the methods embodied in the process are fromlinear
algebra, and yet people will run a frigging regression on anything, without paying a
second of heed to whether the thing they’re modeling is really even vaguely linear.
And throwing in an ‘oh, it’s log-linear, so just take the log of everything and you’re
hunky-dory’ just doesn’t cut it unless you have more justification for log-linearity than
‘oh, it looks all loggy.’

In sum, our dependence on linear regression makes the world aworse place, be-
cause it is often not applicable for observational purposes, and at the same time says
nothing about causation. Going away from the linear regression form, you’ve got two
statistical options. The first is to make things a lot more complex. E.g., do every-
thing as a maximum likelihood estimation of some weird function that you dreamed
up. This allows you to get quantitative values where there were none before, which is
observationally useful, but is even less persuasive than the simpler regression.

The other option is to get much simpler than the linear regression: just describe
what you see. Gather your variables, calculate their means and variances, and tell us
whether the mean is different from zero. A good description of the situation with a few
connecting paragraphs is often a much more persuasive argument than a table of forced
regressions. I wish there were more papers like that.

Modeling of nonlinear systems That said, let’s get back to the subject of me. I draw
up models, many computer-based, which are intended to describe a situation. A good
model will do well on both of the above fronts: on the observational level, it comes up
with data which is comparable to the data we cull from reality, and on the causal level,
it should embody the causal processes that seem similar to that of the real world. I.e.,
a model which always gets the right answers but does so in an intuitively displeasing
fashion will not make it as a subjectively good model.

So the problem is that the folks at [name of center at institution], of which I am

5.3. THE PERCEPTION OF CAUSATION 57

including myself, model situations where the causal process is based on the interaction
of lots and lots of people. Instead of, ‘Oh, variable A rises,which causes variable B to
fall,’ we have, ‘People have a set of heterogeneous characteristics with distribution A,
and if they interact in a specific fashion which seems basically descriptive of reality,
then B results. We can predict how changes in A will affect B.’[That includes both
my all-computer work on migration and my computerless paper-and-pencil analysis of
conviviality.]

It’s observationally great, but dissatisfying with respect to the perception of causa-
tion. You don’t feel smarter after reading the paper. You have no causal factoid to put
in your back pocket and pull out at cocktail parties. But if you’re looking for predic-
tions about a nonlinear system, then you’re much better off with one of these computer
models than an invalid but easily comprehensible linear-regression based causal story.

The MPU It’s a common complaint that modern academics are wankers because they
often break down their papers into the minimal publishable unit (MPU). Back in the
day, an author would expound for a hundred pages on a topic, and may produce one
paper which summarizes his/her/its findings about the worldand its workings. Nowa-
days, the lament goes, the cynical academic would break thatdown into a thousand
short papers, thus multiplying his/her/its citation countby a thousand. Papers like Mil-
grom & Robert’s 1980 magnum opus on auction theory just aren’t getting published
anymore.

I think this is true, but the blame here is in the wrong place—yes, papers are more
likely to be exactly one MPU long, but that is because the readers demand it to be so.
Referees don’t have time to read a hundred technical, meandering pages; they often
don’t have all that much interest in the topic that’s been thrown on their desk. They
don’t feel smarter after reading the darn thing.

A paper which does not embody a simplistic causal story will fail. This is a horrible
thing for the study of systems where there are no simplistic but true causal stories to be
had.

Our hubris People like their gods to have faces, and like them to generally be kind
of like people, but more powerful. Stories about deities have a causal framework much
like that of stories about people; where they don’t fit the normal human form, thousands
of pages get written on why the omnipotent one is only behaving in an unhuman way
on the surface. Similarly, academics expect the workings ofthe world to function in a
basically comprehensible manner, and get annoyed when the world doesn’t.

So my lament is that the models of [name of center at institution] throw such aca-
demics for a loop: my laptop can keep track of more numbers than any human, and it’s
pretty darn easy for me to have it do things which are conceptually simple, but are be-
yond easy A-causes-B explanation. They are observationally sound—and often better
than simpler stories, but are not causally persuasive unless people are willing to accept
causal stories which are complex beyond the workings of their own brains.

58 CHAPTER 5. STATISTICS, SORT OF

5.4 Correlation, causation, and ethics

11 October 2009

We humans have a strong drive toward explaining events via causal stories. A list of
facts is just not satisfying; we want it organized into causal stories where one fact leads
to another. That drive to turn plain facts into causal chainshas a lot of implications;
here, I’ll discuss how that drive determines our ethics.

As you well know, statistics has no concept of causality. This is one of those
philosophy of science things that one could expound on forever, though I won’t go into
it too deeply here. But the concept of causation happens onlyinside the human brain.
It’s not something we can measure, perhaps with a causality ruler (or a more portable
causality tape), and then write down thatA causesB with 3.2 causal units, butC causes
B with 8.714 causal units. There are intuitive ways to measurea causal claim, like
saying that ifA always comes beforeB, thenA causesB; in direct correspondence,
there are easy ways to break such a simple measure, like how Christmas card sales
cause Christmas.

You could take the basic intuition about how causality worksand build machinery
to draw causal flowcharts, which give a wealth of means to reject the flowchart; look up
structural equation modeling or read Perl [2000]. But applythe principle that statistics
can never prove a model of the world, but only reject a false model: statistics can never
prove a causal model of the world. In fact, this case is only worse because we’re not
entirely certain about how to measure or even identify causality. As with any model,
stats can bolster or cut down our confidence in the causal claim, but that’s where it
ends.

But people like stories. As kids, we’re taught how the world works via causal sto-
ries, that were not just a list of incidents but were a chain ofevents. Because granny was
ill, Ms Hood took her basket of food and went walking over the river and through the
woods; because the wolf was hungry and evil, he conspired to eat Ms Hood; because
Ms Hood was virtuous, she was saved. A story where a bunch of unconnected, seem-
ingly random things happen is just not satisfying, and correlation without causation is
dissatisfying in exactly the same way.

Of course, people fake it all the time. You will rarely if everfind a newspaper
article declaring a correlation without strongly implying(if not directly stating) that
the statistical model showed a causal link. Get your favorite researcher drunk and he or
she will stop talking about correlations and start talking about causation, even though
everybody in the room knows that it’s just a mathematical mirage. The drive for turning
random facts into causal stories is just too strong.

Application to ethics There’s a platitude that it is ethics that distinguishes humans
from the rest of the natural world. Above, I said that humans are distinguished by their
ability and tendency to perceive causal relationships. These two statements are closely
related: without causality, there can be no ethics.

Some causal chains are obvious, even to young children: if I drop a plate, then
it breaks. If I kick the dog, the dog will bite me. For those that are not so obvious,

5.4. CORRELATION, CAUSATION, AND ETHICS 59

you can help your child by laying it all out line by line. Here is Joe. Joe committed a
misdeed. As a result, Joe’s misdeed came back to him and he suffered. Here is Jane.
She committed a virtuous act, and as a result, she was rewarded for it. The end.2

Person does good, is rewarded; person does bad, is punishedmay sound simplistic,
but it is the canonical format used by most of the stories we hear or see or read. The
modern version of Little Red Riding Hood above, all of Aesop’s Fables, the one about
Snow White and the vainglorious queen, any romantic comedy,they all tie reward to
the virtuous and punishment to the misbehaving. We’ll get tothe stories that don’t riff
on that theme below.

These stories help us to move up the ladder of causal subtletyfrom mechanical
misdeeds like kicking the dog to societal issues like littering. Thus, causal stories of
the form virtue⇒ reward and ill behavior⇒ punishment are really central to building
a society.

[It so happens that religious stories directly fit into the same structure: the omnipotent overseer makes

certain that good⇒ reward and bad⇒ punishment. That is, where no simple causal mechanism exists, the

omnipotent overseer defines one.]

The lit I think it’s so completely obvious that morality is taught through causal chains
that I don’t feel much compulsion to provide a host of references, but let me give you
one or two so you know I’m not entirely making this up.

First, we can point to Jean Piaget, an oft-cited pioneer in the academic study of
child development. Among others, he wrote many books on how children develop
cause-and-effect relationships, and one entitledThe Moral Development of the Child
(that has almost no discussion of causality). So this could be traced back to Piaget’s
writings circa 1930 if you were so inclined.

The intro pages to Karniol [1980] give a nice summary of the modern interpretation
of Piaget’s moral stories, and examples of how kids sometimes take the causal story to
what we consider an absurd extreme (e.g., the boy stole the bike ⇒ the bridge col-
lapsed). She also ran experiments on about 150 elementary school children. They were
read skeletal stories of the formJoe stole money. Later, Joe fell down the stairs.or Jane
lied. Later, Jane fell in a puddle.There were a range of types of causality, including
immanent causality (the result is because of something inside the person), asyndetic3

and/or mediated causality (it was the person’s action, but mediated via another force),
or chance causality (which is delightfully not jargon). Chance causality explanations
were basically the least popular, ranging in use among the five grades from 16 to 34
percent; mediated causality ranged from 58 to 86 percent usage; immanent causality
ranged from 23 to 47%.

That’s the first experiment; the final experiment, using onlykids who’d given a
mediated causality response in the first experiments, and a story in which the kid in the
story gets struck by lightning, was able to induce a greater recourse to chance causality
among the listeners (70%). But the first two experiments (andanother story in the
third experiment where the boy breaks his leg) still show that if there is no causal story

2Lest you think I closely associate masculine with vice and feminine with virtue, recall that I flip a coin
to determine the gender of all representative agents.

3Syndetic: Serving to unite or connect; connective, copulative.

60 CHAPTER 5. STATISTICS, SORT OF

spelled out, the brain of the listener will probably invent one. If you want more, Karniol
gives a dozen or so other papers that come to similar conclusions: even the youngest
kids will see a link between a person’s actions and the eventual outcome when there is
a relationship to be had, and will invent one when there isn’t.

Variants of the story Now that the canonical story is ingrained in us, hard, there are
all sorts of variants that turn our causal expectations around. Some just make for a
better story, but others begin to show flaws in the system.

[The ending toMoby Dickwas so gut-wrenching because it was so outside of the entire framework.

I’m a bit amazed that it got published and sold well enough that we’ve heard of it, given how much it bucks

convention.]

Adult fiction is filled with what we call moral ambiguity, by which we mean that
the virtuous aren’t rewarded and the evil aren’t punished. This is not to be confused
with stories that create tension by allowing the bad guy to win halfway through, getting
the princess or the thousand pounds of gold bullion[both props play the same rôle in the typical

story]. In those half-win stories, tension comes from our knowledge that the inevitable
downfall will only be worse after the temporary victory.

Many bookshelves have been filled with Dark Knight-type stories about characters
of ambiguous virtue. But we humans have an easy solution for these stories: if we are
firmly wired to see virtue⇒ reward, then we eventually start to see reward⇒ virtue.
In logic class, it’d be a blatant error to conclude the secondrelation from the first, but
we’re not talking about logic, we’re talking about how people think.

If you’re an Objectivist, you learn that whatever it takes togain reward is by defini-
tion virtuous. If you follow other sorts of commerce-oriented ethical systems, then you
follow a similar but looser line. As the cliché goes,might makes right. On the other
side, I’ve heard more than enough people give me a line like ‘it’s not illegal, so it’s not
unethical’, which in this context meansno punishment⇒ not evil.4

Or, it’s easy for both kids and adults to misread what the cause was that led to the
final outcome. It’s downright cliché that the protagonist is attractive and the antagonist
ugly, from which we are taught thatattractive⇒ reward; ugly⇒ punishment.

If the virtuous are always rewarded and the evil always punished, then anybody
who is being punished must be doing something wrong. If we seea person, or a group
of people (grouped by language, size of nose, or genitalia),and find that they are doing
worse than others, our brains work overtime to fill in the blank in the relation ⇒
punishment. E.g., if they hadn’t eaten from the Tree of Knowledge of Goodand Evil,
they wouldn’t be worse off.[Add this to the last paragraph, and we find thatunattractive = evil, which

I find is really how a lot of people think.]

Now, all those stories are really just practice for what happens here in reality, where
we write our own stories. The non-fiction evening news is making a huge effort to fulfill
our expectations: the evil have to be punished, and (from time to time) the virtuous have
to be rewarded. As viewers, our expectations about how the world should be are very
high. If the assailant doesn’t go to jail, then we’re left with the frustration of a story

4It’s not as if I know what the True and Correct ethical system is, but an ethical system that directly
equates individual benefit with ethics is really just the state of nature calling itself ethics, and a rejection of
the idea that we humans can develop beyond biology.

5.5. PROBABILITY V LIKELIHOOD 61

cut short just before the resolution. If their country is evil, and our country is virtuous,
then there is tension until we find a way to bring about some sort of punishment for
them, preferably in a manner that brings rewards to our contractors.

And so we see a great deal of our legislative and interpersonal effort put into making
sure that rewards and punishments are eventually paid out, even though the only real
benefit may be the sense of resolution that comes from making the world fit the stories
we were told as kids.

We all have thesevirtue ⇒ rewardandevil ⇒ punishmentrelations tattooed to
the inside of our foreheads. Our parents made sure of it, by teaching us ethical causal
stories at the same time that we were learning more mechanistic causal stories. If
they didn’t present us such stories, we’d just make up our own. But the mechanical
relationships likeI drop the plate⇒ the plate breaksare much more robust than the
relationship between nice behavior and reward, to the pointthat we can easily invent
unverifiable relationships, like how a pretty face and big muscles implies virtue, or
being homosexual is evil, or that whatever person we’ve never met before is getting
exactly what he or she deserves. The ability to develop and understand causal stories,
which makes us human, gives us ethical beliefs, and allows usto construct a society, is
exactly the same force that lets us dress up self-interestedbehavior as virtue, makes us
pine for retribution against perceived slights, and nudgesus to wish ill upon those who
look or behave differently from our ideal.

5.5 Probability v Likelihood

2 July 2009

Here’s the question: should we distinguish probabilities from likelihoods?
In case you didn’t even know there was a distinction, here arethe definitions. First,

let the wordoddstake our intuitive meaning. Aprobabilitygives the odds of an event,
given any parameters. Given that the mean is zero and the variance one, what are
the odds that the draw will be between 1.1 and 1.2? Alikelihood gives the odds of
parameters given data. We drew a 1.3 from the distribution; what are the odds that the
mean is zero?

Now, the probability can be verified. We can make a million draws from the dis-
tribution, and then count up what percentage are between 1.1and 1.2, and call that the
odds. Likelihood can’t be verified. We have only one distribution to draw from, so we
have no story about re-drawing from millions of different distributions and developing
a confidence that the data comes from one or another.

Some folks take this as settling the question, concluding that there’s a distinction
to be made. The odds of data is relatively concrete; the odds of a parameter is at best a
metaphor to probability. The most famous person who stoppedhere is Mr R A Fisher.

Fisher is an interesting character, in that his techniques are indisputably the base-
line for modern statistics, but his larger worldview didn’tsurvive. Do you know the
definition of a fiducial distribution? Well, it was central toFisher’s overall system.
Fisher was UCL’s Galton Professor of Eugenics, and the reputation of that field hasn’t
been very good ever since that one holocaust.[I do notclaim that Fischer endorsed the Holocaust.

62 CHAPTER 5. STATISTICS, SORT OF

However, he was clear in his endorsement of selective breeding and other such Eugenic principles that we

now consider to be politically incorrect and/or evil.]

Fisher was vehement in distinguishing between probabilityand likelihood—in fact,
he coined the term likelihood to make that distinction.[There’s a comment on the matter from

him on p 329 ofModeling with Data.]

But things are a little more blurred than that. We’ll start with the probability side,
and the story above about making a million draws of an event. This is problematic for
more cases than it is easy. What are the odds of rain tomorrow?We only have one
tomorrow to live. We could look at comparable prior days, buthow similar must a
situation be before it’s properly comparable?

What percentage of cars passing an intersection are SUVs? Ifwe observe over the
course of a day, aren’t we confounding the rush hour rate withthe mid-day rate and the
midnight rate? If we take full days, will Monday have the samerate as Sunday, and
does a Monday in January have the same rate as a Monday in April?

The frequentist interpretation of probability assumes an infinite stream of data that
is identical in all manners but the single variable we care about. This is obviously
a fiction, but we don’t mind because there are enough cases where it approximately
works. Our weatherfolk and surveyors worked out something serviceable and run with
it. [We can think of regression analysis as an attempt to patch over the ‘all else equal’ assumption.]

In the probability v likelihood context, the distinction starts to blur. We only have
one distribution, so the likelihood is a human-invented fiction. We only have one to-
morrow, so the probability of rain is also a human-invented fiction.

Now let’s go the other way, and consider how imaginary or subjective these param-
eters are. Maybe we’ve observed a few manufacturers and we know that contaminants
per million is Normally distributed with a different, observable-by-history mean for
each manufacturer. Now we have a situation where the parameters of the Normal are
not taken from an imaginary distribution, but are just as much observed as the data is.
The odds that a given data draw is taken from one Normal distribution or another can
be calculated from the records on hand.

The joint distribution Me, I spend a lot of my time writing code. What would a
probability function look like? It would take in some data and parameters, and put out
a nonnegative number:p(data, params). What would a likelihood function look like?
Well, it would take in some data and parameters, and put out a nonnegative number:
l(data, params). And in fact, for a given model, like a Normal distribution, the two
functions are identical.

So how’s that for a trip: by our traditional interpretation,a function viewed one way
(with the parameters fixed) is an objective and verifiable fact of nature; the very same
function viewed another way (with the data fixed) is subjective and human-invented.
Let the data bex and the parameter beβ, thenP (x|β) is objective andP (β|x) is
subjective.

In a couple of ways,P (x, β) is a combination of the objective and subjective.
A full, unconditional distribution of data,P (x), would certainly count as objective
in our classification scheme (assuming away the practical problem of gathering it),
andP (β|x) is the subjective likelihood, and we can combine the two to produce the

5.6. THE STATISTICS STYLE REPORT 63

joint, not-conditional likelihoodP (βjx) � P (x) = P (x, β). Of course, you can also
do it the other way, again combining an objective and subjective component to get
P (xjβ) � P (β) = P (x, β).

So isP (x, β) objective or subjective? What can we do with such a function?
I have no idea what Fisher would say[though I suppose this is easy enough to research; I

invite comments from anybody who has done so]. He seemed to be resistant to allowing the
two conditional probabilities to be merged, and took pains to distinguish between a
function of the data given the parameters (such as a probability) and a function of the
parameters given data (of which the fiducial distribution isone); I’m not sure where
he’d class the joint distribution from which both sides can be derived.

The post-Bayesian modernists are fine with accepting the entire thing as subjective.
We don’t know what probability is, and we don’t know what likelihood is. It’s all
subjective from top to bottom.

Here, I’m taking something of a more moderate position, because I have no idea
whether the fundamental philosophy questions are even answerable. I can tell you that
for any sufficiently well-specified situation, I can give youa functionP (x, β), from
which we can derive slices that are functions only of the dataor of the parameters.
Sometimes, this is a mix of the data, the model, and subjective beliefs; sometimes it’s
just a table of observed data.

So that’s why I don’t distinguish between probability and likelihood. The philoso-
phy issues are hard to untangle, and it’s easy to find equations that are objective, sub-
jective, or a mix of both depending on context and opinion. Wemay make distinctions
between parameters and data, but the probability/likelihood formulaP (x, β) doesn’t
care about the distinction. It’s just a function where one input is a Roman character and
the other Greek.

5.6 The statistics style report

19 December 2009

It may sound like an oxymoron, but there is such a thing as fashionable statistical
analysis. Where did this come from? How is it that our tests for Truth, upon which all
of science relies, can vacillate from season to season like hemlines?

Before discussing those questions, let me tap on the brake, and point out that statis-
tics as a whole is not arbitrary. The Central Limit Theorem isa mathematical theorem
like any other, and if you believe the basic assumptions of mathematics, you have to
believe the CLT. The CLT and developments therefrom were thebasis of stats for a
century or two there, from Gauss on up to the early 1900s when the whole system of
distributions (Binomial, Bernoulli, Gaussian,t, chi-squared, Pareto) was pretty much
tied up. Much of this, by the way, counts not asstatisticsbut asprobability.

Next, there’s the problem of using these objective truths todescribing reality. That
is, there’s the problem of writing models. Models are a humaninvention to describe
nature in a human-friendly manner, and so are at the mercy of human trends. Allow
me to share with you my arbitrary, unsupported, citation-free personal observations.

64 CHAPTER 5. STATISTICS, SORT OF

Number crunching The first thread of trendiness is technology-driven. In every
generation, there’s a line you’ve got to draw and say ‘everything after this is compu-
tationally out of reach, so we’re assuming it away’, and the assume-it-away line drifts
into the distance over time. Here’s a little something from a1939 stats textbook on
fitting time trends [?, p 43]:

To fit a trend by the freehand method draw a line through a graphof the
data in such a way as to describe what appears to the eye to be the long
period movement. . . . The drawing of this line need not be strictly freehand
but may be accomplished with the aid of transparent straightedge or a
“French” curve.

As you can imagine, this advice does not appear in more recentstats texts. In this
respect, a stats text can actually become obsolete. But as time passes, approximations
like this are replaced by new techniques that were before just written off as impossible.

5.5. THE STATISTICS STYLE REPORT 65

rems that this framework gives superior models relative to linear projection, but it does
make better use of computing technology.

Hemlines The second thread of statistical fashion is whim-driven like any other sort
of fashion. Golly, the population collectively thinks, everybody wore hideously bright
clothing for so long that it’d be a nice change to have some understated tones for a
change. Or: now that music engineers all have ProTools, everything is a wall of sound;
it’d be great to just hear a guy with a guitar for a while. Then,a few years later, we
collectively agree that we need more fun colors and big bands. Repeat the cycle until
civilization ends.

Statistical modeling sees the same cycles, and the fluctuation here is between the
parsimony of having models that have few moving parts and thedescriptiveness of
models that throw in parameters describing the kitchen sink. In the past, parsimony
won out on statistical models because we had the technological constraint.

If you pick up a stats textbook from the 1950s, you’ll see a huge number of methods
for dissecting covariance. The modern textbook will have a few pages describing a
Standard ANOVA (analysis of variance) Table, as if there’s only one. This is a full cycle
from simplicity to complexity and back again. Everybody wasjust too overwhelmed
by all those methods, and lost interest in them when linear regression became cheap.

Along the linear projection thread, there’s a new method introduced every year
to handle another variant of the standard model. E.g., last season, all the cool kids
were using the Arellano-Bond method on their time series so they could assume away
endogeneity problems. The list of variants and tricks has filled many volumes. If
somebody used every applicable trick on a data set, the final work would be supremely
accurate—and a terrible model. The list of tricks balloons,while the list of tricks used
remains small or constant. Maximum likelihood tricks are still legion, but I expect
that the working list will soon find itself pared down to a small set as optimum finding
becomes standardized.

In the search-for-optima world, the latest trend has been in‘non-parametric’ mod-
els. First, there has never been a term that deserved air-quotes more than this. A ‘non-
parametric’ model searches for a probability density that describes a data set. The set
of densities is of infinite dimension. If all you’ve got a hundred data points, you ain’t
gonna find a unique element ofℜ∞ with that. So instead, you specify a certain set
of densities, like sums of Normal distributions, and then search for that subset that
leads to a nice fit to the data. You’ll wind up with a set of what we call parameters
that describe that derived distribution, such as the weights, means, and variances of the
Normal distributions being summed.

But ‘non-parametric’ models allow you to have an arbitrary number of parameters.
Your best fit to a 100-point data set is a sum of 100 Normal distributions. If you fit
100 points with 100 parameters, everybody would laugh at you, but it’s possible. In
that respect, the ‘non-parametric’ setup falls on the descriptive end of the descriptive-
to-parsimonious scale. In my opinion.

I don’t want to sound mean about ‘non-parametric’ methods, by the way. It’s en-
tirely valid to want to closely fit data, and I have used the method myself. But I really
think the name is false advertising. How aboutdistribution-fitting methodsor methods

66 CHAPTER 5. STATISTICS, SORT OF

with open parameter counts?

Bayesian methods are increasingly cool. If you want to assume something more
interesting than Normal priors and likelihoods, then you need a computer of a certain
power, and we beat that hurdle in the 90s as well, leaving us with the philosophical
issues. In the context here, those boil down to parsimony. Your posterior distribution
may be even weirder than a multi-humped sum of Normals, and the only way to de-
scribe it may just be to draw the darn graph. Thus, Bayesian methods are also a shift
to the description-over-parsimony side.

[Method of Moments estimators have also been hip lately. I frankly don’t know where that’s going,
because I don’t know them very well.

Also, this guy really wants multilevel modeling to be the Next Big Thing in the linear model world, and

makes a decent argument for that. He likes it because it lets you have a million parameters, but in a structured

manner such that we can at least focus on only a few. I like him for being forthright (on the blog) that the

computational tools he advocates (in his books) will choke on large data sets or especially computationally

difficult problems.]

Increasing computational ability invites a shift away fromparsimony. Since PCs
really hit the world of day-to-day stats recently, we’re in the midst of a swing toward
description. We can expect an eventual downtick toward simpler models, which will
be helped by the people who write stats packages—as opposed to the researchers who
caused the drift toward complexity—because they write simple routines that implement
these methods in the simplest way possible.

So is your stats textbook obsolete? It’s probably less obsolete than people will
make it out to be. The basics of probability have not moved since the Central Limit
Theorems were solidified. In the end, once you’ve picked yourparadigm, not much
changes; most novelties are just about doing detailed work regarding a certain type
of data or set of assumptions. Further, those linear projection methods or correlation
tables from the 1900s work pretty well for a lot of purposes.

But the fashionable models that are getting buzz shift everyyear, and last year’s
model is often considered to be naı̈ve or too parsimonious ortoo cluttered or otherwise
an indication that the author is not down with the cool kids—and this can affect peer
review outcomes. A textbook that focuses on the sort of details that were pressing five
years ago, instead of just summarizing them in a few pages, will have to pass up on the
detailed tricks the cool kids are coming up with this season—which will in turn affect
peer reviews for papers written based on the textbook’s advice.

A model more than a few years old has had a chance to be critiqued while a new
model has not. So using an old technique gives peer reviewersthe opportunity to use
their favorite phrase:the author seems to be unaware, in this case that somebody has
had the time to find flaws in the older technique and propose a new alternative that
fixes those flaws—while the new technique is still sufficiently novel that nobody has
had time to publish papers on why it has even bigger flaws.

All this is entirely frustrating, because we like to think that our science is searching
for some sort of true reflection of constant reality, yet the methods that are acceptable
for seeking out constant reality depend on the whim of the crowd.

5.6. SUPREME COURT RULES AGAINST OVERRELIANCE ONP -VALUES 67

5.6 Supreme Court rules against overreliance onp-values

8 April 2011

This is the case of Matrixx Initiatives Inc. et al. vs. James Siracusano et al. (PDF
Opinion5)

The question in the case is whether Matrixx responded correctly to a doctor’s pub-
lishe findings regarding ten cases of people out in the publicwho used their flagship
product, Zicam, and then permanently lost their sense of smell. If we were running a
controlled experiment, ten cases out of tens of thousands isnot statistically significant.
Matrixx is a publicly traded company, so it is their obligation to reveal to shareholders
all pertinent info, but Matrixx didn’t disclose the news about this study, because the
results were not statistically significant.

Initially, Matrixx did a ham-fisted job of responding: they sent a cease-and-desist
letter to the author of the paper telling him that he did not have permission to use
the brand name Zicam in his paper, which just made them look like bullies, created
a paper trail that they had seen the study, and which was irrelevant anyway, because
tradmark6= copyright, and you don’t need any permission from anybody tomake true
and above-the-board statements about a product by name. Youthink the Chicago Tri-
bune6 or Forbes7 asked for permission before repeatedly using the word Zicamin their
coverage? But enough about what looks like a solid botch of intellectual property law.

Let’s get back to the botching of statistics. The key claim that Justice Sotomayor
spent the ruling tearing apart was that “reports that do not reveal a statistically signif-
icant increased risk of adverse events from product use are not material information.”
That, is Matrixx claimed a bright-line rule that if a study turns upp > 0.05, then it is
immaterial.

I won’t go into great detail on the Court’s argument, becauseI’m writing on a
statistics and computing blog, and I do not believe that any of you reading this blog
would take a bright-linep-value rule at all seriously in your own work. You can maybe
find some stats textbooks that suggest something like this toundergrads, but I’d guess
that the authors feel terrible about oversimplifying so much. You may believe that
a journal has a bright-line editorial custom of only publishing studies that eke out a
p < 0.05, but at the same time make nasty comments about how the systemis broken.
Like neckties, it’s one of those self-perpetuating customsthat we all know we’d be
better off without.

The Court’s discussion begins atA on page nine of the PDF linked at the top of
this column, and I give you the page number because it is recommende reading. I
worked in tech law (until it got boring), and the Supreme Court rulings were always
the funnest part of the work. First, the ruling is about a specific question, which may
not be what the press yammers about; you may be surprised thatthe case is really about
a legal technicality, and that the Court really wants to say something else but instead
winds up writing a ruling that just keeps some detail of the legal machinery clean. The

5http://www.supremecourt.gov/opinions/10pdf/09-1156. pdf
6http://www.chicagotribune.com/news/nationworld/sc-d c-0323-court-business-20110322,

0,4462213.story
7http://blogs.forbes.com/billsinger/2011/04/01/buffe tt-sokol-zicam-matrixx-supreme-court/

68 CHAPTER 5. STATISTICS, SORT OF

case of Westboro Baptist Church hurling hompohobic invective at a soldier’s funeral
(Opinion PDF8) made mention here and there of speech which is offensive andonerous
(“Because this Nation has chosen to protect even hurtful speech [. . .], Westboro must
be shielded from tort liability for its picketing. . . ”), butthe legal logic is entirely about
who had obtained what permits when and where people were standing. There, the
subtext itself makes for good reading.

Because these are typically rulings about the Big Questions, like whether we can
we derive cetainty out of studies rooted in probabilites, sothey are much more readable
than the average opinion (especially once you get into the habit of just letting the excess
of citations and footnotes wash past you). So I encourage youto see how a lawyer
tears apart somebody’s claim thatp-values provide a bright-line test for evidence’s
relevance. Pay especial attention to footnote six, in whichJustice Sotomayor defines
what ap-value is. I wish I was writing another textbook so I could cite the Supreme
Court on this.

The justices instead reiterated a prior ruling that something needs to be disclosed
to investors if there is “a substantial likelihood that the disclosure of the omitted fact
would have been viewed by the reasonable investor as having significantly altered the
‘total mix’ of information made available.” If you’re the sort of person who thinks in
terms of Frequentists vs Bayesians, that means you’re a Bayesian, and that probably
means that you’re salivating right now, because the SupremeCourt just ruled that in-
formation is relevant to the extent that it causes a reasonable person to update his or
her subjective prior.

The right null for the job Following a common pattern in the medical literature,
there is anecdotal evidence that Zicam caused a burning sensation followed by a loss of
smell, backed up by some prior knowledge that zinc has been known to have deleterious
effects on certain types of tissue. There’s a small-n problem at the core of this: if one
in ten thousand suffer an effect, then clinical trials of a hundred patients have no chance
of passing the bright-line ofp < 0.05, but after a million people use it, then we expect
a hundred people will have suffered a permanent loss of theirsense of smell.

The null hypothesis in a study is typically of the formnothing happened, there
are no differences, nothing of significance is going on. This is a good default because
your typical researcher is running a study because he or she really believes that there’s
something going on, and sonothing happenedcorrectly sets the bar high.

For the medical literature, when it is asking whether harm iscaused, this is not a
helpful null hypothesis. Say that a study’s null is that Drugacil does no harm, but the
data finds that Drugacil kills people, withp = 0.75. There’s a 75% likelihood that
the thing about killing people was just random noise, and a skeptical researcher might
retain the belief that nothing happened until given convincing evidence that something
did, but I sure ain’t using Drugacil. The correct null here isthat harm was caused, and
in an ideal world we reject it only when we are confident that there is no harm.

This isn’t to say that all evidence is relevant evidence, andother inquiries in other
contexts will play out differently. There’s still the micronumerosity problem, potential
ethical issues of such a study, et cetera. But this point is worth adding to the Supremes’

8www.supremecourt.gov/opinions/10pdf/09-751.pdf

5.6. SUPREME COURT RULES AGAINST OVERRELIANCE ONP -VALUES 69

already long list of explanations for why a bright-linep-value test doesn’t work: some-
times the right null hypothesis shouldn’t be that nothing happened, and sometimes,
evidence that might be due to chance is still important and inneed of consideration.

Why are there still all those undergrad textbooks that push for a bright-linep-value
test? Because we want certainty. We don’t want to live in a world where statistics only
speaks in probabilities and where context always matters. But here we are.

6
TEACHING THIS STUFF

6.1 Breaking down the pipeline

30 March 2009

Let me get back to the second episode (p 35), where I pointed out the value of
distinguishing between inferential and descriptive techniques.

I believe my first few tries at understanding statistics failed because I took classes
that didn’t make this distinction. Consider good ol’ ordinary least squares (OLS),
which is often all the stats an undergrad will learn. Here arethe steps:

• Clean your data, producing an input matrixX and a dependent vectorY . This
is via various computer-code matrix manipulations and substitutions for missing
data.

• Find the line of best fit, with coefficientsβ = (X ′X)−1X ′Y , using pure linear
algebra.

• Test the elements ofβ, using methods most folks recognize as statistical, regard-
ing comparing a statistic against a distribution.

The point here is that each of these steps is a different worldfrom the others: com-
puter trickery, linear algebra, andt-distributions basically have nothing in common.
Like most undergrad courses, I’ll pass on the first step, and assume a perfect data set.
Then we’re back to the distinction from prior episodes: the second step is purely de-
scriptive, and the third step is purely inferential.

As usual, there is little or no benefit to confounding the descriptive and inferen-
tial step. They evolved separately; talking distributionsprovides nothing for the un-
derstanding of linear algebra; talking linear projectionsdoes nothing to forward an
understanding of the Normal,t, orF distribution.

But you’d think that linear projections andt-tests are joined at the hip from the
many stats classes and textbooks that present the steps above as an unbreakable pipeline.

Fun fact: errors do not need to be Normally distributed for the OLS projection to
be the line of best fit (i.e., to minimize squared error). I’vemet a number of extremely
intelligent people who thought otherwise. This even appeared in a draft textbook I was
peer-reviewing last week.

70

6.1. BREAKING DOWN THE PIPELINE 71

This fun fact is from the Gauss-Markov theorem, which is a linear algebra and
minimization exercise that has no need for math regarding distributions. But at this
point, you can see where that confusion came from: when thesepeople learned OLS,
they simultaneously learned the part about projection (theGauss-Markov theorem) and
the part about hypothesis testing (based on Normally- ort-distributed errors).

I also think that there is a truly prevalent perception that that thepurposeof OLS
is the hypothesis test at the end of the pipeline, that that’sall that OLS does: it tests
whether one column of theX matrix affects or does not affect a column of theY matrix.
The other numbers that the software spits out—because the software also merges the
descriptive and inferential steps—are just irrelevant.

The OLS pipeline goes from inputs to projection coefficients, pauses for air, then
goes from projection coefficients and variances to confidence levels. Those who believe
that there’s no middle step, and it goes straight from inputsto confidence levels, are
prone to miss out on a number of points:

• Missing the inappropriateness of OLS whenY can’t be expressed as a linear
combination of the elements ofX . OLS is appropriate ifY is a linear function
of X2

1
, but a student looking for the final confidence interval may not have an

eye out for squaring or other such such transformations.

• Failing to realize that OLS is one of an infinite number of alternate models that
one could use to test a hypothesis, where those tests also conclude with at-test
orF -test.

• Ignoring practical significance, such as when a coefficient is statistically sig-
nificant but implies a minimal change in outputs given a reasonable change in
inputs.

I could think of a few more, mostly bad habits about grubbing for p-values. Such
bad habits are from a failure to balance the descriptive and the inferential.

Policy implications At this point, my recommendations should be obvious: when
teaching a standard pipeline like OLS, be clear as to which steps are inferential steps,
and which are descriptive. Teach them separately, as a set ofpipe joints each of which
has value by itself, and at the end mention that what you’d taught to that point can be
welded together to form a smooth pipeline.

There are a few common ways by which parts get merged and OLS sold as an
inferential technique only. I have several examples of their use on my bookshelf, and
recommend that they be avoided.

The most common method of confounding is to open the section on OLS with a
list of assumptions required for both description and inference. This has minor ben-
efits over introducing each assumption as it is needed—it makes it easy to memo-
rize the list for the test—but has the major disadvantage of not giving context as to
why these assumptions to be memorized are necessary. I’m pretty sure that it’s these
all-assumptions-first textbooks that make it so easy for me to find people who think
Normally-distributed errors somehow fit into the Gauss-Markov theorem.

72 CHAPTER 6. TEACHING THIS STUFF

Some textbooks on my bookshelf literally class regression in the inferential statis-
tics part of the book, and heavily focus on the interpretation of those darnp-values. See
above about encouraging significance-grubbing.

As you can imagine, my own writing takes pains to make the distinction, andMod-
eling with Datacovers most methods twice: once purely descriptively and with no
inference, once a chapter or two later covering only inference. I don’t think any conti-
nuity is lost because students have to flip between p 274 and p 307.

I used OLS as an example here, but one could apply it to may parts of what’s
covered in a probability and statistics class. For example,all the distributions are almost
always covered in one long list, even though some are for description of natural data
and others are for inference using constructed statistics.As Kmenta [1986] explains,
“There are no noted parent populations whose distributionscould be described by the
chi-squared distribution.”[I like Kmenta’s textbook because it does a wonderful job of telling the

reader exactly whether he’s talking about description or inference at any given point. Too bad it’s out of

print.] From a purist’s point of view, all distributions are just functions, but from the
student’s point of view, the crucial question is what s/he will do with each distribution.
If their use is different, then that needs to be made clear, meaning that methods for
inference and those for description need to be clearly distinguished.

6.2 Testing the model using the model

11 February 2010

Three guys are stranded on a desert island And all they have to eat is a case of
canned pears. The joke is that they’re all researchers.

The physicist says: ‘we can mill down these coconut husks into lenses, then focus
the heat of the sun on the cans. When their temperature rises enough, the seams will
burst!’

The chemists says: ‘No, that’ll take too long. Instead, we can refine sea water into
a corrosive, that will eventually just melt the can open!’

The biologist cuts him off: ‘I don’t want salty pears! But I’ve found a yeast that is
capable of digesting metals. With care and cultivation, we can get them to eat the cans
open.’

The economist finally stands up and smiles: ‘You are all trying to hard, because it’s
very simple: assume a can opener.’

[Pause for laughter.]

I’ve found that this joke is so commonly told among economists that you can just
tell an economist ‘you’re assuming a can opener’ and they’llknow what you mean. It’s
also a good joke for parties because people always come up with new ways to open the
can. What would the lit major do?

Cracking open a model with no tools Now back to the real world. You are running
the numbers on a model regarding data you have collected. To keep this simple, let’s
say that you’re running an Ordinary Least Squares regression on a data set of canned

6.3. WHY YOU SHOULD TEACH YOUR STATS STUDENTS C 73

pear sales and education levels. You have the data set, then run OLS to produce a set
of coefficients,β, andp-values indicating the odds that theβs are different from zero.

Thosep-values are generated using exactly the procedure listed above: assume a
distribution of theβs, write down its CDF, then measure how much of the CDF you
assumed lies between zero andβ.

We’re still assuming a can opener. We used the assumptions ofthe model—that
errors are normally distributed with mean zero and a variance that is a function of the
data—to state the confidence with which we believe the very same model.

To make this as clear as possible: we used the model assumptions to write down a
probability function, then used that probability functionto test the model. But making
an assumption does not add information.

Pick up any empirically-oriented journal, and in every paper, this is how the confi-
dence intervals will be reported, by assuming that the modelis true with certainty and
can be used to objectively state probabilities about its ownveracity.

So ¿why doesn’t all of academia fall apart?
First, many of the assumptions of these models are rooted in objective fact: given

such-and-such a setup, errors really will be Normally distributed. [We could formalize this

by writing down tests to test the assumptions of the main model, though for our purposes there’s no point—

they’ll just fall victim to the same eating-your-own-tail problem.] Even lacking extensive testing,
if the data generation process is within spitting distance of a Central Limit Theorem,
we’ll give it benefit of the doubt that there is an objective truth to the distribution.

Second, we can generalize that point to say that the typical competently-written
journal article’s assumptions are usually pretty plausible, or at least do little harm.
When they report that one option is more likely than another,that is often later verified
to actually be true, though the authors had used subjective tools to state subjective odds.

Third, we shouldn’t believep-values—or any one research study—anyway. A
model with fabulousp-values will increase our subjective confidence that something
real is going on. But if you read that ap-value is 99.98%, ¿do you really believe that in
exactly two out of 10,000 states of the world, the differenceis not significant? Probably
not: you just get a sense of greater confidence.

So this works because we treat the process as subjective. Theauthors made up
a model, and used that model to state the odds with which the model is true. But if
we agree that the model seems likely, and if we accept that theoutput odds are just
inputs to our own subjective beliefs, then we’re doing OK. Problems only arise when
we pretend that thosep-values are derived from some sort of objective probability
distribution rather than the author’s beliefs as formalized by the model.

6.3 Why you should teach your stats students C

5 September 2011

[This is an essay for those of you who are teaching a nontrivial amount of programming to your students.

If you’re teaching just enough programming to run theregress() function and absolutely no more, then

don’t worry about all this.]

74 CHAPTER 6. TEACHING THIS STUFF

I’ll start with the main argument as to why you shouldn’t teach your stats students
C. Here are some snippets cut and pasted from Joel1, a guru well known in the straight-
up programming world.

. . . there are two things traditionally taught in universities as a part of a
computer science curriculum which many people just never really fully
comprehend: pointers and recursion.

All the kids who did great in high school writing pong games inBASIC
for their Apple II would get to college, take CompSci 101, a data struc-
tures course, and when they hit the pointers business their brains would
just totally explode, and the next thing you knew, they were majoring in
Political Science because law school seemed like a better idea. I’ve seen
all kinds of figures for drop-out rates in CS and they’re usually between
40% and 70%.

When you struggle with [more quotidian programming issues], your pro-
gram still works, it’s just sort of hard to maintain. Allegedly. But when
you struggle with pointers, your program produces the lineSegmentation
Fault and you have no idea what’s going on. . .

For applied statisticians, the conversation typically ends there: C is hard because
it doesn’t hide pointers, and there are other languages where you don’t have to think
about them.2

The other objection, which I’ll put in as an aside, is that theenvironment for C
is entirely open, while closed environments are easier to get started with. R, matlab,
&c. provide you with a single window where the commands and the output go. I think
this is an outdated objection, and if you poke around, you’llfind that installing a full
development environment is about as easy as installing a stats package, and that IDEs
and stats package GUIs have basically merged in functionality. There are so many tools
for tracking down those segmentation faults in the present day that they’re not really
such an issue anymore.

Back to that main thread about pointers, which are the location of data rather than
data itself. Why is there any value to making that distinction, and working in a language
where users have to think about it? From a practical perspective, there’s the simple fact
that pointers will speed up your work immensely, so you can bootstrap variances from
your MCMC model without tears.

But from a theoretical perspective, statistics is all aboutmultiple levels of refer-
ences to data. Above, the CompSci students had trouble with understanding the differ-
ence between data and the location of data, but if you’ve evertaught Stats 101, you’ve
spent a class period watching your students get mystified by how the variance of the
data and the variance of the mean of the data are different. Then you get to do that
over when you teach regressions and show the students that the variance of the data,
the variance of the OLS parameters, and the variance of the error term are again all
different things.

1http://www.joelonsoftware.com/articles/ThePerilsofJ avaSchools.html
2I sometimes wonder if it isn’t just thatpointers pointing to datasounds so sharp, and maybe they need

another name. “An array is implemented as a bunny paw cuddling onto the first element of the array.”

6.3. WHY YOU SHOULD TEACH YOUR STATS STUDENTS C 75

That is, statistics is filled with distinctions between data, statistics of data, and
statistics of statistics of data. Let’s say we have a simple hierarchical model, where we
take the mean of each subgroup, then run a Probit on the means.The variance of those
Probit parameters are statistics of statistics of statistics of data. You’ll sometimes find
box-and-arrow diagrams of such models that look a lot like the diagrams used to teach
pointers.

So when your students are learning C and getting lost about a pointer to a pointer
to data, they are getting practice in exactly the same skill they need to keep track of
what’s going on in nontrivial statistical models.

If you clicked through to the article by Joel above, then you saw that Joel is actually
pretty pro-C as a teaching language:

But when you struggle with pointers, your program produces the lineSeg-
mentation Fault and you have no idea what’s going on, until you stop
and take a deep breath and really try to force your mind to workat two
different levels of abstraction simultaneously.

Earlier in the essay, Joel explains that “You need training to think of things at
multiple levels of abstraction simultaneously, and that kind of thinking is exactly what
you need to design great software architecture.” It’s also exactly what you need to
understand a hierarchical model or even the difference between the variance of a mean
and the variance of a data set. If your students are smart enough to understand statistics,
they’re smart enough to understand pointers. And after theyget good with pointers,
learning statistics will be easier.

And, as a bonus, the code your students write will be of higherquality, because
they’ll be writing with a full tool set, not the subset that a stats package offers under
the presumption that users aren’t smart enough to work with both data and references
to data.

The other reason I like C as a teaching language is that it is a very simple language,
with few grammatical exceptions for anything. I do all my C work with 18 keywords
(which is a count way at the bottom of the rankings, which typically range between
about forty and ‘we stopped counting’). I’ll get to the scoping constructs next time,
but they’re also darn simple. You won’t spend another four orfive sessions of class
time going over objects, encapsulation, and exceptions to the object and encapsulation
hierarchy, because these things are done without additional syntax. The complexity
of real-world problems—string handling, matrices, vectors, regressions—happens via
libraries that load more functions and structures, but leave the basic syntax intact.

In fact, the great majority of other languages and packages could be described with
a sentence of the form,this language is kinda like C, except it has an additional syntax
to handle [elements] more easily.Which is why C is a great teaching language for
students who are likely to face a half-dozen other little programming languages by the
time they leave grad school: a student who learns C will have the background needed
to pick up all the other languages quickly and easily. So not only will they have more
training in the sort of pointer-like multiple indirection that is a modern statistical model,
they’ll be ready to implement it in whatever tools are neededfor today’s project.

7
TOO MANY MODELS

7.1 Bringing theoretical models to data

1 May 2009

I had a simple agenda behindModeling with data: better modeling.
Despite the title, many people miss this, what with the exposition on modeling

restricted to the first few pages and the rest of the book beingfilled with C code. I
used to think those people missed the modeling issues because of the language thing.
One del.icio.us user bookmarked this site with the note: ”Statistical programming in
C? What the ass?” But she did bookmark the site, and (I can tellyou because of a short
email exchange) did got over the foreign sound of statisticsin C to like the approach.

No, I don’t think reasonable people can be truly hung up over asurface issue like
programming language. I now understand that the real language barrier is in the many
definitions and understandings of what is a model.

When I talk to a statistician, a model means a probability distribution over ele-
ments, and that’s about it. I’d start talking to a statistician about modeling subject-
specific knowledge about the interaction of elements, and giant question marks would
appear over his head. Which is not to say that the person is a moron, but just that his
understanding of the meaning of the wordmodelis much more narrowly focused than
mine.

In the R package, themodel object specifically encompasses generalized linear
models (GLMs). Again, this is not to disparage R, but to show that there’s a good
number of people out there for whom it’s perfectly OK to equate the wordmodelto
GLMs, because 100% of the models in their research will fall into that category.

Grab off the shelf one of those journals with “Theory” in its title, where authors can
just present a theory and its implications without bringingit to data. There are such
journals in any field, from economics to sociology to physics. The models are often
wild and creative. Elements interact in every way imaginable. For example, I’ve done
a lot of work with network models, where individual agents form links via iterative,
nonlinear processes, regulated by whatever the author dreamed up. The models aren’t
necessarily complex, but they have no need to stick with simple linear components.

The empirical definition of a model and the theoretical definition don’t necessarily
overlap. For example, agent-based modelers naturally haveagent-based simulation in
mind when they hear the M-word, and many enthusiastically reject the GLMs. That

76

7.2. A GENERAL MODEL OBJECT 77

attitude means that many ABMers are unfamiliar with the statistical models that were
the entire world of the statisticians above. Conversely, your average statistician has
zero experience with agent-based models.

Empirical implications of theoretical models 1

The multiple meanings ofmodelare a problem when the theory gains traction and
is eventually brought to data. A model to the theorists includes anything under the sun,
while a model in your typical stats package is a GLM. So instead of directly fitting the
model, one tests its empirical implications, such as how variableA going up should
cause variableB to go down. We can fit that sort of implication into a linear regression
without serious violence.

But wouldn’t it be great if we could fit and test the model itself?
The work I was doing that really motivated the book was on using agent-based mod-

els as probability models, which would allow for more directtesting of the model. But
as above, the agent-based concept of a model and the probability concept of a model
are academically disjoint: few people accept and use both concepts simultaneously.

Why not? There are many very valid reasons. There is value to specialization, and
I won’t claim that everybody needs to be a polyglot all the time.

But there are also many lousy reasons, based on how what we caneasily theorize
is so much broader than what we can easily calculate.

If your definition of a model were just OLS, you’d have no need to code anything.
Mathematically, I cover that ground in two pages (pp 271–272), and implement it in
code in two separate code samples, because it’s so trivial that it wasn’t worth revising
out the redundancy. If you have the statistician’s definition of modelin mind, you’re
probably going to be puzzled by the book’s lengthy exposition on computing the hard-
to-compute.

But by the broader definition of a model, which the theoreticians in all fields are
using, we are worlds away from having things so neatly boxed.That network model,
however the details play out, can’t be pulled off the shelf.

So that’s what the book is about: my best stab at the tools you’ll need to bring a new
model to data (or to generate artificial data from your model), where the wordmodel
takes on as broad a meaning as possible.

Next time I’ll talk more about the mechanics of writing code for modeling in the
broader sense.

7.2 A general model object

4 May 2009

Last time, I talked about the balkanization of modeling: basic statistical models,
agent-based models, many types of physical models, are all academically disjoint, by
which I mean that few people simultaneously use more than oneof these paradigms.

1EITM is the name of an ongoing series of summer institutes in political theory, in which I have partici-
pated.

78 CHAPTER 7. TOO MANY MODELS

Figure 7.1: Different fields have diverse and hard-to-reconcile conceptions of a model.

This time, I want to bring it to a more practical level: if yourmodel is anything
beyond a never-to-be-estimated system of equations, it will be expressed in computer
code. But our software has as much diversity in conceptions of a model as our academic
departments do. If I want to do a regression, I can use R and itspleasant generalized
linear model (GLM) interface; if I want to do agent-based modeling, I can use any of a
number of object-friendly frameworks—but not R, which is terrible for such modeling.
[We are not having the discussion about computationally-intensive modeling in R now, but trust me when

I say it’s not the right tool for the job.] If you’re doing an EE-type simulation with polar
coordinates or complex variables, then you’re more likely to be doing it in Matlab, and
have probably never heard of R.

The balkanization creates problems for those who want to do something outside of
the group norms. If I want to use an agent-based model as a prior and then do Bayesian
updating using observed data, none of the above will accommodate me. If I want to
try hierarchical modeling tools to simplify and approximate a complex circuit diagram,
I’ll be doing a whole lot of inter-package negotiation. Generally, if I want to talk across
different disciplines (or even sub-disciplines), I have tohave multiple conceptions of a
model in my head at once. Many humans have no problem with this, but few software
packages are capable of such a feat.

A standard model form Is there a general definition of a model that we can opera-
tionalize into code, which would allow us to interchange andcombine models in one
place?

I’ve lost a lot of sleep over that question. A definition that’s too general is basically
vacuous—we can just say that a model somehow maps from one setof functions to
another, and that’ll cover anything you can think of, but won’t say anything. If we
restrict models to GLMs, we can get an immense amount of work done, but at the

7.2. A GENERAL MODEL OBJECT 79

cost of balkanizing away all the fields where modeling doesn’t mean regressions. The
engineering challenge is in finding a decent balance betweengenerality and practicality.

Here’s what I came up with in the end. I present it to you not only because I think
it’s an important question, but to challenge you to think of what you would or would
not include in an implementation of a general model. My own definition, which I’ve
operationalized, reduces down to this:

A model intermediates between data, parameters, and likelihoods.

There are four significant words in the definition, which require four more defini-
tions:

Parameters: These you are familiar with. The mean and variance of a Gaussian
distribution, the coefficients of a regression, or a simulation’s tweaks about frequencies,
population size, &c.

Data: Data is generally the other input: the draw from the Normal distribution
whose odds you’re finding or the observations for your regression. When doing esti-
mation, we think in terms of the data being an input and the parameters being an output,
but you’ll see below that there’s more symmetry than that; wecan turn the tables and
fix the parameters to produce artificial data.

Likelihoods: The odds of the given parameters and data co-occurring. Fora Normal
distribution, this is what you get from looking up the data point on the appropriate table.
For a regression, the likelihood is calculated under the assumption that errors have a
Normal distribution.

By having a likelihood, does the definition force us to stick to probabilistic models?
No, because there is always some means of evaluating the quality of the model, and
that can be read as a likelihood. Typically, this is a distance to some sort of ideal,
or some objective to be maximized. If you don’t believe me that a distance function
can generate a subjective likelihood, then just take this asmetaphorical (until I have
a chance to post an entry on why this is the case, and why we shouldn’t distinguish
between likelihood and probability).

Intermediation: We could go in three meaningful directions among the above.
Data⇒ Parameters. This is the standard estimation problem. You have some data,

and find the most likely mean and variance of the Normal distribution, or the regression
coefficients that produce the line of best fit. We invariably use the likelihood function
to do this.

Data + Parameters⇒ Likelihoods. That is, the odds of having the given inputs.
These are the tables in the back of statistics textbooks for different distributions, with
parameters along the columns and data values along the rows.

Parameters⇒ Data. Given a set of fixed parameters, we can find the most likely
data, or the expected data, or make random draws to produce anartificial data set
consistent with the model and parameters.

These methods are generally linked, and you can often solve one from the other.
For example, if you give me a likelihood function (D + P ⇒ L), I can find you
the optimal parameters via maximum likelihood estimation (MLE, D ⇒ P). This is
a boon for software design, because when a model doesn’t havea quick method for
estimating parameters, I can fill in a default method; when itdoes, like the case of

80 CHAPTER 7. TOO MANY MODELS

ordinary regression, I can use that instead of the general but computationally-intensive
MLE.

You can see that there’s a lot more that we want our models to dothan just direct
estimation of parameters from data. You may have in mind other things that one would
do with a model that aren’t covered; I drew the line here basedon the above problem
of writing a definition that is both inclusive and operationalizes into something useful.

But I should note testing, which is certainly one of the more common things to
do with a model. I separate testing from the model proper, because of everything
I’ve already said about the importance of differentiating the descriptive and inferential
sides, and the prior entry (p 70) on building a pipeline with separate estimation and
testing steps. From such a perspective, testing is not a partof the model, but something
you can do with it.

Every test has the same form: establish a distribution; locate the data and a ref-
erence point (usually zero); establish the odds that the data and reference point differ
given the distribution. I toyed with the idea of establishing a generalized testing object,
but saw little benefit, being that the test is already typically a single line of code: look-
ing up the CDF of the appropriate distribution at the given point. If you don’t have a
CDF on hand, you can of course generate it from the model via random draws.

[Which brings us to one more thing we often want to do with a model: generate a CDF. I implement this

as a histogram, which is just another view of the same model.]

Be creative What’s the benefit of this standardization of models? First,we can write
methods to work with any model. Part of the estimation-testing pipeline that we often
see in many stats packages is a tendency to put the code for certain methods inside
the code for models with which the methods are closely associated, which means that
the method isn’t available when some other model wants to useit. With methods that
take black-box models as inputs, we have a better chance of applying methods from
disciplineA to models from disciplineB.

We can test models against each other. This could mean a Poisson versus an Expo-
nential, or as above, it could mean a theoretical distribution versus a histogram fitted
to the model. Or how about an agent-based model with or without some extra mov-
ing part? Most importantly, we can compare a common baselinemodel, like a simple
linear regression, against a relatively complex simulation.

My goal in all of this was to use a simulation to generate a probability distribution.
In the format here, that makes sense, and is easy: just specify a likelihood function
based on a distance to an optimum, use it to estimate the parameters of the model,
then use those optimal parameters to find likelihoods for other purposes. Because the
model is a black box with a limited set of interfaces (like thelikelihood function and the
parameter estimation routine), we don’t have to care about the methodological innards
of the model, and can use it as we would a Poisson distribution.

For many purposes this black-boxing is exactly the right wayto deal with a plethora
of models. Excluding some models from some uses because of their methods of com-
putation is just blunt bigotry, which has no place in our enlightened era. There are
still some practical considerations about what works best in a given situation, but you
probably thought about those things during the pencil-and-paper stage of the project.

7.3. MULTIPLE IMPUTATION ROUTINES 81

It is not the place of the software to place restrictions on your creativity.
[Not one to just chat about the theory, this is a bird’s-eye view of theapop model object actually

implemented in the Apophenia library. There are still technicalities to be surmounted, which I discuss in the

coder-oriented design notes2.]

7.3 Multiple imputation routines

27 September 2010

Imputationis the statistician’s term for what everybody else calls filling in missing
data. In some contexts, imputation is just a part of the background routine, whether
you’re willing to admit it or not. Are you giving the mean of a set of observations
and just ignoring the missing values? That’s equivalent to imputing each missing value
as having the value of the mean. The expected value is expected to be right, but the
variance for a list of 100 items where ten were filled in at the mean is smaller than the
variance for a list of 90 known items (which is what results from listwise deletion).
Which is the right variance? We can’t answer that question with the information to
this point, because we don’t have a model of why the missing data is missing or how it
differs from the rest of the data.

To fully flesh out the situation, we’ll need two models: one model that is the data
generation story we want to tell, like a linear regression story or draws from a Multi-
variate Normal distribution, and the other model is the one that explains how we filled
in the missing data. That model is probably not much like the model that you intend to
estimate; it is probably much simpler, like a plain Multinomial distribution. After you
make a filling-in-the-blanks draw from the distribution, you can find the variance of
the statistic you want for the overall distribution based onthe now-complete data; and
for several draws from the fill-in distribution, you can find the variance of that statistic
across data sets.

I chose thatwithin/acrosslanguage to parallel the language of within group/across
group variance calculations from the ANOVA world, because the process here is anal-
ogous to the process there.

That’s the whole story: specify a model by which your data wasgenerated, then use
that model to fill in a series of data sets, calculate your preferred statistic for each, and
compute total variance as the sum of within-imputation and across-imputation variance.

¿Is it Bayesian? Really, the storyline is just the convolution of two models.Let the
parent model be a distribution over the outcomef(out|d,md), wheremd is missing
data, and letmd have distributiong(md). To observe the final outcome of the model,
you’ll need to find the convolution,f ◦ g, which, keeping to blog-level notational pre-
cision and taking the observed data as having probability one, one could write as the
overall joint distributionf(out, d,md) = f(out|d,md)g(md) At this point, it should
start looking like Bayes’s rule as presented in the typical Bayesian updating setup. The

2http://apophenia.sourceforge.net/apop_notes.html

82 CHAPTER 7. TOO MANY MODELS

coincidence here is that both Bayes’s rule and the missing data are convolutions of two
models, and therefore both will take this form.

That’s convenient because our Bayesian friends have been spending the last few
decades putting real work into developing the computational tools one would require
for convoluting two probability distributions. So if you wanted to, you could think of
the missing data problem as a Bayesian problem, pull out yourgeneralized Bayesian
solver (which probably means your MCMC routine), and get results. If you don’t
have a generalized solver, you can set up your missing data models so that the two
distributions are from the table of conjugate distributions, and calculate results for the
output distribution with pencil and paper.

The direction you take and tools you use probably depends on what you want your
output to be. If you want the entire distribution, then a Bayesian-style technique is
your only bet. If you just want total variance for a statistic, then the full convolution
is overkill, and the method I mentioned at the head of this entry, where you simply
generate a half-dozen full data sets and sum up the within/across variances, will give
you the most accuracy for your computational buck.

There are several choices in naming a setup: the context, themethods used, et
cetera. The real crux of the missing data problem is in specifying an auxiliary model
for the missing data to accompany your main model, making it just one of a wide
range of methods that join two complementary models. But in the textbooks, you’ll
find the process named after the method of calculating the post-convolution statistic’s
variance,multiple imputation, although there are other methods to doing the model-
merging calculations.

7.4 Multiple imputation’s setting

24 October 2010

This is really part II of the last segment on multiple imputation (p ??). M.I. or
one of its friends is really essential for honest analysis. If you have missing data, you
have some model for filling it in, and it’s better to measure the variability added by the
missing data model than to just ignore it and pretend the values you filled in are correct
with certainty.

So, then, ¿why aren’t these techniques absolutely everywhere missing data is found?
People in some fields, like your survey jockeys, are entirelyfamiliar with this problem,
and would never fill in a value without properly specifying that model. Other fields and
the systems that support them expect you to reinvent the tools as needed.

There’s a multiple imputation function for Apophenia, which basically does the
last step or two of the multiple imputation process for you: given a series of fill-ins,
find the statistic for each, and apply the within/across variance formula. It was a bear
to write, and not because the math is all that hard. In fact, Apophenia is built from
the ground up around the use of models in the sort of plug-in format, so if there’s any
stats system out there where writing a function to find a statistic using a parent model
crossed with a fill-in model, it’d be this one. But look at how much has to be specified:
parent model, possibly one model for each column of missing data, a statistic that uses

7.4. MULTIPLE IMPUTATION’S SETTING 83

all of those models at once, and the base data in a format that the first three items know
how to work with. All of these—especially the aggregation ofseveral models for each
variable into a unified missing-data story—have to be specified and tested by the user
before calling the multi-impute function.

As above, Apophenia has a standardized model object that canbe sent to func-
tions and thrown around internally without much fuss; to thebest of my knowledge,
it is currently unique in that respect, so other systems needto come up with a fussier
means of specifying how the multi-impute function is to makeits draws and aggregate
everything together.

There’s an R package namedmi which solves the problem by requiring the user to
use specific set of models, based on a Bayesian framework preferred by some of the
pioneering works in multiple imputation, and as per the lastepisode, the combination
of models can easily make use of Bayesian model-combining techniques. To use the
package, you pick from a short list of named models, and away you go.

Quick—if you start with a Dirichlet prior with parameters[α1, α2] and a Multi-
nomial likelihood function[β1, β2], what will the posterior look like? OK, time’s up:
it’s a Dirichlet distribution with parameters[α1 + β1, α2 + β2]. So using this specific
form dodges a computational bullet, so it’s the sort of thingthat is the focus of themi
package. I’m being a little unfair with this example, because the package allows much
more flexibility than just this simplest of model combinations, but it’s also a far cry
from accepting any type of input model crossed with any type of fill-in model. R is
Turing Complete, so you can do it, but expect to start from near zero and brush up on
your S4 object syntax.

By which I mean to say that crossing one model against anotheris basically the
limit of what we can organize with the tools we have today, which is a little sad.

Presentation But let’s say that you’re one of those people who assumes awaythe
problem of organizing two models (one of which is a compound model for several
variables) plus a statistic-calculating function plus a data set as just trivial and to be
assumed away; then you still have (1) the problem of having users understand that
these are the inputs they are to provide. Remember that most users got an education in
a traditional statistics course that taught a series of plug-and-play finalized techniques
and procedures. If all you know is OLS, then estimating an aggregate of OLS and
missing data generation process is mindblowing.

Then, (2), there’s the output problem. There are a number of possible outputs: most
verbose would be to (A) actually report the several imputations for every data point, or
you could (B) report the variance of each imputed value, or you could (C) report the
larger variance of the final statistic and not bother with theinternal workings.

Option (A) is the most voluminous data, and has been advocated by a decent num-
ber of people, especially for the case where there are separate people on the data-
gathering side and the data-analysis. The gathering side could give ten filled-in data
sets to the analysis side, and leave the analyst side to calculate the statistic of its choos-
ing and trust that it will apply the simple total across/within variance equation correctly.

Option (B) is a middle-ground that gets difficult. We want to know how well the
imputed values are fitting in, especially when the imputations are more complex than

84 CHAPTER 7. TOO MANY MODELS

a simple multivariate Normal. This is where good data visualization comes in. We’ve
had literature on the problem of presenting too many data points for decades now, and
we have established means of coping. But in this case, the data is both voluminous
and complex: each point has a span around it, and data may or may not be missing on
different dimensions, meaning that that different confidence blobs may have different
dimension. This is something we’re still working on.

Themi package focuses on this, providing a heap of plots of the imputations for
use in diagnosing problems. The authors do a fine job of givinggood views of what is
fundamentally too much information, but it’s still a lot to digest, and would be hard to
throw into a journal article with only a few sentences of explanation.

Option (C) is certainly the easiest to the consumer, becauseeverything has finally
been summarized to a single variance, and the reader doesn’thave to care about whether
the main cause was within-imputation or across-imputationvariance (though that’d be
easy enough to report as well). Now your only problem is to explain to readers that
your variance is larger than the next guy’s because you took into account problems that
the other guy didn’t.

The problems for all of these options at these various levelsof aggregation are real
but surmountable. In each case, the problem is in education:the end-user, whether
an analyst or a package user or a reader, needs to understand that we’re combining a
parent model with a data generation model, what a good or bad data generation model
will look like, and how to fit this combination model into a world where most models
are just a single surface model. That is, multiple imputation is also at the edge of what
a typical statistics education can accommodate.

8
TECHNIQUE

8.1 Using a program as a library

13 April 2009

I often have this scenario: I have an analysis to do using somequirky data set. The
first step in every case is to write a function to read in and clean the data. Along the
way to doing that, I’ll write functions producing summary statistics sanity-checking
the data and my progress.

At this point I can get to the actual process of producing a descriptive model, and
then testing that model’s claims. This will all be inmodelone.c

Next week, I have an idea for a new descriptive model, which will naturally make
heavy use of the existing functions to clean data and displaybasic statistics. So how
can I most quickly get to those functions while doing minimaldamage to the original
program?

In the context of C and many, many other systems, the only difference between a
function library and a program is that a program includes amain function that indi-
cates where execution should start. So the problem is basically in making sure that
at compilation, there is exactly one version ofmain visible to the compiler at a time.
Here are a few options, all of which are appropriate in some circumstances, though I’ll
focus on the last here.

Option one: Simply add more functions embodying the new model to modelone.c ,
and add a command-line switch to select the model.

Pros: immediate (especially if you don’t usegetopt to parse the command line).
Cons: gets messy very fast. Something about a single several-page code file discour-
ages reading.

Option two: Move all of the more useful functions inmodelone.c to a second
file, model lib.c , write a header, and then #include the header in bothmodelone.c
and the newmodeltwo.c . Pros: very organized. Cons: can take time to do it right,
which may not pay off for an isolated project.

Option three: Conditionally comment out themain function. Here is a skeleton
for modelone.c :

void read_data(){
...

85

86 CHAPTER 8. TECHNIQUE

}

#ifndef MODELONE_LIB
int main(){

...
}

#endif

If MODELONELIB is not defined (note the use of#ifndef rather than#ifdef),
thenmain will appear as normal, so you can compilemodelone.c as normal.

If that variable is defined, thenmain will be passed over—and suddenly you have
a library instead of a program. Somodeltwo.c will look like this:

#define MODELONE_LIB
#include "modelone.c"

void run_second_model(){
...

}

int main(){
read_data();
run_second_model();

}

We’ve successfully usedmodelone.c , which had been a program file, as a library
file.

Pros: you don’t have to rewritemodelone.c , save for adding the if/endif. Thus,
this is fast and doesn’t require any re-testing of your original work. Cons: if you left
a lot of globals floating around inmodelone.c , you now have all of those globals
floating around in your second model. This will be a good thingfor some globals, but
side-effects may creep in if you aren’t aware of what else you’re bringing in.

Adding main to a library In the other direction, there’s good reason to have a self-
executing library: testing. Rather than writing the actuallibrary and then a separate
file for testing, just put all the tests at the bottom of the library file, along with amain
routine to run them all. Here, the default usage is to not runmain , so surround it
with #ifdef RUN LIB TESTS... #endif , and then defineRUNLIB TESTSonly
during testing. You may be able to surround all of the testingfunctions in the#ifdef ,
so non-testing library users can’t see any of the test functions at all.

You can defineRUNLIB TESTSeither via a#define line at the top of the file
that you keep normally commented out, or during compilation, by specifying-DRUN-
LIB TESTSamong the C flags to GCC (or via comparable means for other compil-
ers).

8.2. MAKING INTEGERS TWO-DIMENSIONAL 87

8.2 Making integers two-dimensional

21 April 2009

This is a note about the generally-maligned modulo operation. For the most part,
we just use it to get everynth item from a list. Or we might want to shove something
into a numerical limit; e.g., I used it the other day for a check digit. The typical check-
digit scheme consists of summing a list of elements and then taking that sum mod ten
to reduce it to a single digit, or mod 11 to reduce it to a singledigit where 10=X.

The use I’ll focus on here is in jumping dimensions. Now and then, you find
yourself in a linear space, but need to implement two-, three-, or n-dimensional data.
Through creative use of the modulo operator, you can easily turn 2-D into 1-D and vice
versa.

You’d normally use a double loop to touch every element of a matrix—one loop
for the rows and one for the columns. But you can do the same using a single loop
and integer division. Forint ct = 0, 1, 2, 3, 4, . . . , the pair (ct/3 , ct%3) takes on
the values (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),. . . . This looks a lot like a
double-loop with two variables, and you can use it to cover the same ground. That is,
the following two loops behave identically:

int cols = m->size1;
int rows = m->size2;

for(int i=0; i < rows; i++)
for(int j=0; j < cols; j++)

gsl_matrix_get(m, i, j);

for(int i=0; i < cols * rows; i++)
gsl_matrix_get(m, i/cols, i%cols);

To help you verify this, here’s the table that both sets of loops would traverse, with
both the one-dimensional index and the coordinate pair:

i%3 = 0 i%3 = 1 i%3 = 2
i/3 = 0 0 (0, 0) 1 (0, 1) 2 (0, 2)
i/3 = 1 3 (1, 0) 4 (1, 1) 5 (1, 2)
i/3 = 2 6 (2, 0) 7 (2, 1) 8 (2, 2)
i/3 = 3 9 (3, 0) 10 (3, 1) 11 (3, 2)

If you (or your students) are a visual learner, then the mod-as-table form gives
you a potentially more comprehensible way to think about an operator with which we
have limited day-to-day experience. Once you have the integers in a table, the modulo
operation becomes an axis along a space. For example, the condition if ((x % 3)
== 1) has a simple physical interpretation: it’s just the second column of the table.

Returning to code writing, I’m not presenting this as a clever way to save a line
of code: the (int division, modulo) version is typically badform relative to the simple
double-loop. But situations come up reasonably often when you need to put two-
dimensional data into a one-dimensional space, and integerarithmetic is the way to do
it.

88 CHAPTER 8. TECHNIQUE

In fact, the pattern continues for more dimensions. Leti be the one-dimensional
index the system is handing you, and letdn be the size of thenth dimension in the
array you would like to express. Here is the pattern of the coordinates:

2-D: (i/d1, i%d1)
3-D: (i/(d1*d2), i/d1%d2, i%d1)
4-D: (i/(d1*d2*d3), i/(d1*d2)%d3, i/d1%d2, i%d1)
5-D: (i/(d1*d2*d3*d4), i/(d1*d2*d3)%d4, i/(d1*d2)%d3, i/d1%d2, i%d1)

Next time, a digressive note about integer arithmetic and programming languages.

8.3 Overloaded with operator overloading

29 April 2009

Last time I discussed some pleasant uses of integer division, but I think most of us
really think of it as an annoyance. We don’t expect all the decimals to be truncated. If
I type in3/2 , I expect1.5 , darn it, not1.

Indeed, this is an annoying gotcha to C and other integer-arithmetic languages,
and more broadly, it shows us the dangers ofoperator overloading. O.o. is when an
operator, like/ , does something different depending on the types involved.For two
integer types, the slash does the divide-and-truncate operation, and for anything else it
does the usual division.

Oh, you can do pointer arithmetic, wherein you add a pointer and an integer. This
too can lead to confusion: givenint x=3 , if you should mistakenly ask for&x+3 ,
you don’t get a compilation error, and the system just steps forward three steps as
requested (which may or may not segfault).

Other languages actuallyencourageo.o., and give you tools to create a different
meaning for/ for any given pair of types. Well, you just saw the tradeoff: we can do
things and create meaning for something that had been incoherent (like a pointer plus
an integer), but if our expectations are wrong, then we have that much less keeping us
from doing the wrong thing.

Human language is very redundant, which is a good thing. Redundancy is a good
thing because it allows error-checking. When Nina Simone says ne me quitte pas, it’s
OK if you space out at the beginning, because. . . me quitte pashas thepasto indicate
negation. It’s OK if you space out at the end, becausene me quitte . . .has thene to
indicate negation.

Programming languages don’t do this. We express negation exactly once, typically
with only one character (!), and don’t worry about things like case and gender. So if
you space out in the first half of writing a line of code, there’s nothing to call you on
errors.

I’m not talking about sex enough on this blog, so here are somewords for genitalia.
The Spanish for penis ispene, masculine; the feminine equivalentvagina, is gramati-
cally feminine. But as you can imagine, there are vulgar forms for when these terms
sound too medicinal: the masculinepenebecomespolla (f), and the girl-parts become
the masculine (and very vulgar)coño (m). I could think of no better demonstration of

8.3. OVERLOADED WITH OPERATOR OVERLOADING 89

how little gender in grammar has to do with actual gender. Instead, just think of them
as noun classes.

So it’s not about boys versus girls, but about redundancy, and giving the listener a
few more clues about what the person across the room is tryingto get across.

Programming languagesdo have genders, except they’re called types. Generally,
your verbs and your nouns need to agree in type (as in Russian,Amharic, Arabic,
Hebrew, among other languages). That means redundancy, andperhaps a different verb
form for the same action when executed on different types. With this redundancy, you’d
needmatrix multiply(a, b) when you have two matrices, andcomplex -
multiply(a, b) when you have two complex numbers (however expressed).

With operator overloading, of course, you don’t need any of that. Express matrix
multiplication asa * b and complex multiplication asa * b. This is much more
brief, but you’ve lost redundancy.

I’ve said it above, but let me say it again: redundancy is a good thing. It’d be
hard to confuse a complex scalar with a real matrix, but it’s darn common to confuse a
pointer-to-int and an int, or take a one-dimensional matrixto be a vector. As you add
types, it only gets worse, and some systems will give you a list, vector, and unordered
list to confuse, and the power to multiply together any two ofthem witha * b.

From here on to more complex types, there are a lot of subtleties involved. SQL,
the language for manipulating database tables, is based on an algebra, meaning that
there is an operation that maps to addition, an operation that maps to multiplication,
a distributive property, et cetera. What if SQL were expressed as such, so you would
write joins ast1 * t2 instead of the verboseselect ... where t1.x =
t2.x form we do use? Things would be a lot more brief, but not necessarily any easier
to read, write, or understand, because the* operator doesn’t give you any information
about what a product means in this context on these types. Youjust have to have the
documentation open or have memorized the rules. The typicalform for the rule is
something like, ‘It’s sort of like multiplying scalars, butfor the following additional
rules and caveats. . . .’

So, once more, redundancy is good, because the metaphor between the product in
the real scalar context and the product in the context of the new type is probably only
partially correct.

So there’s the tradeoff: you’ve saved space on the page, and didn’t have to type
much of anything, but have lost all redundant hints thatb is actually a list and not the
vector you thought it was.

From here, the final decision is entirely subjective. I am a klutz and often commit
the sort of errors I describe above, so I benefit heavily from aredundant language. You
may be working primarily with only a few types that are hard toconfuse, in which case
all of my warnings are not an issue, and you only benefit from the brevity. But from
the frequency of kvetching about howint / int behaves differently fromfloat
/ float , it seems a lot of people lean toward preferring redundancy.

This is the only real example of o.o. I can think of in C. The* gets reused as binary
multiplication and unary pointer-dereference, but those are very different actions and
there’s never confusion.

90 CHAPTER 8. TECHNIQUE

8.4 Structures

24 March 2011

First, let us go over the type system of every computing language in use today:

• There are basic types. These are numbers and words, in some form.

• There are lists or arrays of items, which have arbitrary length, and are indexed
by a number.

• There are lists of items which are indexed by a name of some sort: dictionaries,
hashes, orstructs .

If you carry this list with you, it’ll be easier to get a start in any new language.
What are its basic types, how do we manipulate a list of identical types, and how do
we aggergate diverse types into a structure of named elements?

[This is a lead-in for a longer series, by the way.]

Here’s how the three types of type work out in practice among some popular lan-
guages:

basic types indexed lists named lists
C family int, float, char arrays, pointers structs
Lisp numbers, strings list list
Awk numbers, strings — array
Perl $numbers, $strings @array %hash
Python numbers, strings list, tuple dictionary
FORTRAN 77 int, float, char arrays —

This is off the top of my head—no need for irate letters about the things I approxi-
mated to keep the table short. But the organizational problem is the same in all cases:
we sometimes have a bunch of homogeneous items, and we sometimes have disparate
items, and we need a syntax for both types of organization.

There are a few quirks worth noting. Lisp is famous for using the same structure to
handle both cases, which is all very neat and clean.

Awk is amusing in that it only has compound types indexed by a text name. You
can fake normal indexed arrays with the naming scheme of"1", "2", "3",
Here’s some sample code, set up so you can cut and paste it ontoyour command line:

echo ’
BEGIN { try[0] = "zero";

try[1] = 1;
try[2] = 2;
try["2"] = 8;
for (i=0; i<=2; i++)

print try[i];
} ’ | awk -f ’-’

8.5. STRUCTS VERSUS DICTIONARIES 91

You will see thattry[2] will print 8, meaning that the index is a string, even
when you wrote it as a number. So that’s nifty: if we have the dictionary/struct/hash,
then we can fake simple arrays with them.

The table above counfounded two things: how we refer to an item (by number or a
name), and whether the collection is homogeneous or of diverse types. For example, the
awk code put both a string and integers into the same array, soawk’s hashes are in the
heterogeneous-holding category. For array-by-numeric-index, having homogeneous
types is pretty much the norm, because if you’re referring toa list of items that are only
distinguished by which is first, second, third, . . . , then they’re probably pretty darn
similar, type-wise (not to mention efficiency issues). Somelanguages do allow a list of
differently-typed elements to be thrown into a list, so you could havebox[0] be the
box name,box[1] be a sublist of height/length/width, andbox[2] be a pointer to
the next box, but this is terrible form, and should be relegated to being an occasional
lazy convenience.[I in fact did this in some code earlier today, so I can only be so righteous.]

I’ll finish the thought next time, when I cover the named-index types: structs
and dictionaries, and how these types are and are not similaracross languages.

8.5 Structs versus dictionaries

25 March 2011
This continues the last entry (p??) giving a simplified (but sufficient) view of com-
pound types across all languages. Every language has lots ofcute tricks, but if you
know what sort of means your language has of representing lists of numerically in-
dexed elements, and how it deals with lists of named elements, then you can fake
yourself a pretty long way along.

In the last episode, I equatedstructs and dictionaries, which may seem odd to
those of you who have used both. Their intent tends to be different, as revealed by their
names:struct s are for structured collections of data, while dictionaries are for long
lists of named elements.

[The internal workings are certainly different, but the point of this post is that this paragraph on internals

is a digression which you can skip. Astruct is a variant of an array, in that it’s a sequence of items at some

spot in memory; the only difference is that the position has aname instead of a number, and the distance

from one item to the next, in terms of transistors on the memory chip, isn’t constant. A dictionary or hash

is a higher-level structure, maybe a linked list or something like what I sketch out below, which somehow

associates a name (a text string) with each item. Comparing two strings is computationally expensive, so the

strings are typically munged into a more easily compared number—a hash. So thestruct is a variant of

the array that allows variable-length elements and names inyour source code; the dictionary is a high-level

data structure that happens to use strings as labels.]

All those differences aside, they do share much in common. You’ll notice, for
example, that none of the languages in the list from last timehave both a fixedstruct
and a dictionary built in to the language: if there’s a dictionary or hash, then that serves
as the vehicle by which complex types get constructed. In theother direction, though,
you can’t use astruct to generate an especially long list of named elements, like a
bona fidedictionary of English words and their definitions.

Or to put this another way:

92 CHAPTER 8. TECHNIQUE

array struct dictionary
many homogeneous elements yes no yes
some heterogeneous elements don’t yes yes

I explained thedon’t entry last time: your language may allow a numerically in-
dexed array to hold a long list of heterogeneous elements, but this is lousy form; more
below. Theno entry is becausestruct declarations can only be so long here in
practical reality.

At this point, some of the fans of the newer languages declarevictory—the dictio-
nary does more than thestruct . But this is using only what is built in to the grammar
of the language.

A dictionary is an easy structure to generate given what we have in the static-struct
languages. Here’s some C code; for consistency with the awk example from last time,
you can cut and paste it onto your command line.

echo ’
#include <stdio.h>

typedef struct {
char * key;
void * value;

} keyval;

int main(){
int zero = 0;
float one = 1.0;
char two[] = "two";

keyval dictionary[] = {{.key="zeroth", .value=&zero},
{.key="first", .value=&one},
{.key="second", .value=&two}};

printf("keyval %s: %i\n", dictionary[0].key,

* (int *)dictionary[0].value);
printf("keyval %s: %g\n", dictionary[1].key,

* (float *)dictionary[1].value);
printf("keyval %s: %s\n", dictionary[2].key,

(char *)dictionary[2].value);
}
’ | gcc -xc ’-’; ./a.out

Once you write afind key function, this can work as a full-blown dictionary.
[The thing about knowing the types on output can also be worked around via creative
macros, but for most applications you don’t need to.] Writing this function is left as
an exercise to the reader, but it’s just an instructional exercise, because fleshing this
out and making it bulletproof has already been done by other authors; see the GLib’s
keyed data tables orGHashTable , for example. The point here is simply that having

8.5. STRUCTS VERSUS DICTIONARIES 93

compound structs plus simple arrays equals a short hop to a dictionary. If you are
coming from a dictionary-heavy idiom to the C family, then you’ll have to split your
dictionary uses intostruct -like short lists and long lists, and use a structure out of
GLib (or Boost, or whatever is appropriate) for the long homogeneous lists with a name
index.

OK, so we’ve seen (last time) how Awk uses named lists to fake numbered lists.
We put named lists into numbered arrays to generate key-value lists. What if we have
only simple numbered arrays?

FORTRAN 77 (which is not Fortran 90 or later versions) lacks the ability to declare
complex types. This is true of many of the punched card languages first developed in
the ‘60s and 70s. If you want a structure listing dimensions one through three, pop-
ulation count, and workspace size, then declare an integer array of size 5 and just
remember thativ[1] throughiv[3] are the dimensions,iv[4] represents popula-
tion, iv[5] represents workspace size, and so on. This is what I’d above referred to
as bad form, and the language all but forces you to do it. And now that you have your
array of integers, set up another arrayfv for the floating-point values.[Exercise: given

only numerically-indexed arrays of homogeneous types, howwould you set up a key/value structure? If you

wind up with four or five arrays, is there any way to bind them into one parent structure, so you don’t have

to send all those arrays to every function that uses the structure? [answer: no, not in F77.]]If you want a
linked list where item 4 points to item 2 which points to item 6, then declare an array
of integers and write 2 in location 4 and 6 in location 2, and perhaps -1 in location 4 to
indicate the start of the list. If that sentence confused you, try writing (or debugging) a
whole program in that style.

Here’s an actual code snippet, a function call cut and pastedfrom archives of FOR-
TRAN routines (I ran it throughf2c ; the R project uses this in the orignal FORTRAN):
ehg131(xx, yy, ww, &trl, diagl, &iv[20], &iv[29], &iv[3], & iv[2],
&iv[5], &iv[17], &iv[4], &iv[6], &iv[14], &iv[19], &wv[1] ,
&iv[iv[7]], &iv[iv[8]], &iv[iv[9]], &iv[iv[10]], &iv[iv [22]],
& iv[iv[27]], &wv[iv[11]], &iv[iv[23]], &wv[iv[13]], &wv [iv[12]],
& wv[iv[15]], &wv[iv[16]], &wv[iv[18]], &i 1, &wv[3], &wv[iv[26]],
&wv[iv[24]], &wv[4], &iv[30], &iv[33], &iv[32], &iv[41], &iv[iv[25]]
&wv[iv[34]], &setlf);

I could explain whativ[1] throughiv[41] stand for, but it wouldn’t help. This
is as write-only as code gets.

I’ve made some effort to translate some such code to C, and it’s something I really
regret. The problem with code like this is not that it’s in a now-unpopular language,
but that it’s in a language that doesn’t support named, heterogeneous data structures.

There’s more: objects (structs/dictionaries with functions in them), variants like
Python’s tuples, sets, bags, and everything else you learned about in your data struc-
tures textbook. But if you’re a tourist to a new language and have to get things done
fast, the above will be a good start. In an episode or two I’ll really expand this point.

94 CHAPTER 8. TECHNIQUE

8.6 Easy re-typing with designated initializers

1 November 2009

This column is about dealing with multiple formats for the same thing. To give the
simplest example, consider a plain old list of numbers. The raw representation is an
array, where the numbers are a sequence in memory. But then you don’t know how
long the thing is, so you need to also have a note somewhere as to its size. Maybe you
want to name it, or treat it like 2-D matrix. Next thing you know, you’ve got a long list
of extra data taped to that simple list.

Now you’ve got design problems. In terms of the systems I workwith, you’ve got
several levels of intent and complexity, including the simple double * , thegsl -
vector * , thegsl matrix * , and theapop data * structures, any of which could
be used to represent a few numbers.

These different structures aren’t just there for fun: a scalar doesn’t necessarily be-
have like a 1×1 matrix or a one-unit vector.

• a scalar times aN×1 column vector is usually read to produce a scaledN×1
vector.

• A 1×1 matrix· aN -unit vector is a similar scaling operation, but here we’ll have
to assume that the vector is a row vector, and the output will be either a 1×N
matrix or aN -element vector understood to be a row, depending on custom.

• A vector dot a vector is usually taken to mean a row vectorx dot a column vector
y, producingx1y1+x2y2+ · · ·+xnyn. But a vector of length one doesn’t match
dimensions with a vector of lengthN > 1, so in this case we’d just throw an
error.

There are already a lot of subtleties, like whether we want tobe explicit about
whether a vector is a row or a column, or just assume that it’lldo whatever is needed
to conform, or whether the output wants to be a scalar, vector, or matrix.

Dealing with complexity These different, sort of overlapping types are necessary,
but they inevitably add complexity to the system. There are some methods for dealing
with these different types, all of which have their benefits and bugs.

• Just make everything the most inclusive structure. Pros: users don’t have to
think: everything is a namedN -dimensional frame of long long double-precision
floating-point numbers, labeled with arbitrary-length strings, and there’s no need
to worry about sub-types and such. Cons: writing down the number 14 is now a
massive production. Now you couldn’t distinguish a scalar from a 1×1 matrix if
you wanted to.

• Overload functions, so a function can take any representation of a list of numbers
as input, and handles the differences internally. This gives surface ease, because
the function user usually doesn’t have to think too hard about types. But if it’s a

8.6. EASY RE-TYPING WITH DESIGNATED INITIALIZERS 95

double * you still need to remember to send in an extra length parameter, and
it’s hard to encode the above scalar/vector/matrix subtleties into such a system,
because you’re never quite sure how a function will read yourinputs. The bugs
produced by subtle differences like these are, in my experience, among the most
difficult to debug.

• Have the user do the type-casting between things: pulling smaller elements out of
the larger structs, and building purpose-built parent structures to wrap the smaller
stuff. Cons: you need to know the structures, and have to do the work of explic-
itly stating things. Pros: the process of subsetting takes zero computer time, and
the process of wrapping is not necessarily annoying, as discussed below.

None of these methods are ideal, and which devil you choose isa matter of local
considerations, practical issues, and personal taste. I gravitate toward the third, wherein
the user is expected to know the darn underlying hierarchy oftypes, and deal accord-
ingly. Why? Because I’ve found that systems that hide that hierarchy from you do a
lousy job of it. In case this essay isn’t long enough, have a look at this essay on the
law of leaky abstractions1, which explains that you can get away with not explicitly
acknowledging the different types for a while, but eventually you’re going to have to
confront the differences. With good technique, it’s not hard to switch types on the fly.

Figure 8.1: Thedouble * to gsl matrix/ vector to apop data hierarchy.

Making it easy Getting elements out of a structure is pretty easy: just point to it.
Because you can have multiple pointers pointing to the same thing, it’s easy to rename
something that is deeply nested inside the hierarchy. E.g.,an apop model (which
would float above the type diagram above) holds parameters inan apop data set,
which holds agsl vector , which holds a list ofdouble s. So:

double * list = my_model->parameters->vector->data;

1http://www.joelonsoftware.com/articles/LeakyAbstrac tions.html

96 CHAPTER 8. TECHNIQUE

do_something(list);
do_more(list[3]);

Since the new name is just a spare pointer to the same data, allchanges to the data
(without moving the pointers themselves) happen as expected, you didn’t copy any
data, and you don’t have to free anything at the end. Clean andsimple.

Going up the hierarchy is more difficult, because you need to add all that extra data
yourself; one paragraph was enough to cover going down the tree, and the rest of this
column will be about going up the tree. I’ll start from the most verbose, and work my
way toward the easier methods, so don’t get discouraged by the part where I use ten
lines to take a dot product—I’ll have it back down to one in theend.[As we C users like to

say, there are an infinite number of ways to do it.]

There are functions to wrap things. For example, theapop dot function has a
quite clean syntax that takes in twoapop data structs (plus optional parameters in-
dicating transposition), but if your data isn’t in that input format, you’ll need to wrap
it. Here’s an example where we know that we’re multiplying a 3×2 matrix against a
two-element column vector, using a function to copy data to the right structure:

apop_data * a_dot(double * set1, double * set2){
apop_data * d1 = apop_line_to_data(set1, 0, 3, 2);
apop_data * d2 = apop_line_to_data(set2, 2, 0, 0);
apop_data * out = apop_dot(d1, d2);
apop_data_free(d1);
apop_data_free(d2);
return out;

}

If you’re just doing this once, the deallocations at the end may be optional, but if
you’re writing a function to be called a million times, they’ll become essential.

For matrices or vectors, you could produce a dummy wrapper and then point to
the data. But don’t forget to unlink before calling the free function, lest you lose the
original data:

apop_data * another_dot(gsl_vector * v, gsl_matrix * m){
apop_data * dummy1 = apop_data_alloc(0,0,0);
apop_data * dummy2 = apop_data_alloc(0,0,0);
dummy1->vector = v;
dummy2->matrix = m;
apop_data * out = apop_dot(dummy1, dummy2);
dummy1->vector = NULL;
dummy1->matrix = NULL;
apop_data_free(dummy1);
apop_data_free(dummy2);
return out;

}

That is unabashedly a lot of work for one dot product.

8.6. EASY RE-TYPING WITH DESIGNATED INITIALIZERS 97

The first way in which we can save the trouble of deallocating is to use thestatic
keyword to guarantee that a shell will always be on hand to fill. [If you’re not familiar with

static variables, see pp 39–40 ofModeling with Data.]

I do this sort of thing so often that I even have a convenience macro to simplify the
process.

#define Staticdef(type, name, def) static type name = NULL; \
if (!(name)) name = def;

apop_data * easier_dot(gsl_vector * v, gsl_matrix * m){
Staticdef(apop_data * , dummy1, apop_data_alloc(0,0,0));
Staticdef(apop_data * , dummy2, apop_data_alloc(0,0,0));
dummy1->vector = v;
dummy2->matrix = m;
return apop_dot(dummy1, dummy2);

}

The next step in the chain is to just produce that dummy structure on the fly, which
is where designated initializers come in.

apop_data * easiest_dot(gsl_vector * v, gsl_matrix * m){
apop_data dummy1 = {.vector = v};
apop_data dummy2 = {.matrix = m};
return apop_dot(&dummy1, &dummy2);

}

What just happened: we used designated initializers[p 32 ofModeling with Data] to allo-
cate a structure and fill one element. The elements not explicitly mentioned are zero, so
we don’t have to worry about them. This works for theapop data structure because
it is designed to be OK with being mostly empty; below we’ll see some structures that
are a bit more needy.

That trick allocated anapop data struct, but you’ll notice that every library
function takes in a pointer:apop data * . This distinction is why we need to use
&dummy1 instead of justdummy1 when making the function call. But this setup
means that we don’t have to deallocate anything at the end: the structure is cleaned
up automatically when the function exits.

Some people are lines-of-code averse, and really hate the idea of having those extra
lines of code producing extra structures. So, just do it in place:

apop_data * one_line_dot(gsl_vector * v, gsl_matrix * m){
return apop_dot(&((apop_data) {.vector = v}), &((apop_da ta) {.matrix = m}));

}

I like the three-line form better, myself, partly because I need the(apop data)
type cast when not on the declaration line. Maybe some macroswill clean up the
second form:

98 CHAPTER 8. TECHNIQUE

#define d_from_v(v) &((apop_data) {.vector = v})
#define d_from_m(m) &((apop_data) {.matrix = m})

apop_data * one_line_dot(gsl_vector * v, gsl_matrix * m){
return apop_dot(d_from_m(m), d_from_v(v));

}

Going from a raw array to the GSL’s vectors and matrices require a little more
care, because you’ll need to add some metadata: the number ofrows/columns, and the
requisite jumps.

apop_data * a_dot_again(double * set1, double * set2){
gsl_vector m = {.data = set1, .size1=3, .size2=2, .tda = 3};
gsl_vector v = {.data = set2, .size=2, .stride = 1};
return apop_dot(d_from_m(m), d_from_v(v));

}

Thetda (trailing dimension of array) andstride elements tell the system how to
convert the 1-D layout in memory into the right shape. For subvectors and submatrices,
the jumps may take different forms, but for our purposes, thetda is always equal to the
row size, and the stride is always one. With that in mind, we can wrap these details in
macros, and daisy-chain it all together:

#define v_from_a(v, size) &((gsl_vector) {.data = (v),\
.size =(size), .stride = 1})

#define m_from_a(m, size1, size2) &((gsl_matrix) {.data = (m),\
.size1 =(size1), .size2=(size2), .tda = (size1)})

apop_data * a_dot_again(double * set1, double * set2){
return apop_dot(d_from_m(m_from_a(set1, 3, 2)), d_from_ v(v_from_a(set2,

}

In the end, you’re still going to have to climb your way up the hierarchy a few steps
for this array-to-data case to work. It’s up to you if you wantto take that last step and
write a more macros:

#define dv_from_a(a, size) d_from_v(v_from_a(a, size))
#define dm_from_a(a, size1, size2) d_from_m(m_from_a(a, size1, size2))

All of these macros are cheap, in the sense that they allocateshort structures and
don’t copy any of your data. Also, they’re a whole lot shorterthan the ten-line version.

On the con side, I think there exist people who would call thembad style, because
you’re not using the formal methods of allocation (e.g.,gsl vector alloc), and
are thus bypassing checks that things are OK. Situations that depend on those ignored
structure elements having non-NULLvalues may surprise you in odd cases.

There’s the problem that by skipping the setter functions, you’re assuming knowl-
edge of the internal structure of the struct that shouldn’t be your problem—which is

8.7. SCOPE IN C 99

true: you the user shouldn’t really have to care abouttda s. At least you can look those
details up once and hide them in a macro.[This argument usually continues that the underlying

structures might change as the designers come up with new ideas, but this is not seriously an issue. Early on,

structures change, but at this point, the GSL and even Apophenia have a sufficiently large base of users that

arbitrarily screwing around with core structures is a social impossibility. So, frankly, the macros here are not

as bad form as the textbooks say they are.]

Summary paragraph: There’s real benefit to having differenttypes: a scalar is just
not a 1×1 matrix or a one-item vector, so we need to be able to specify all these struc-
tures. But, as a direct corollary, we need to be able to easilyjump between structures
as necessary. In this column, I gave you nine examples of how to take a dot product,
depending on the inputs. Our pals designated initializers and compound literals saved
the day, because they let us set up a quick structure, fill it, and use it without worrying
about memory and deallocation. You can apply these tricks ina variety of situations;
for those of you who might follow exactly the array-to-matrix-to-data forms above,
you will find all the above macros in one cut-and-pasteable block in the web version.

8.7 Scope in C

7 September 2011

OK, here goes: all of the rules for variable scope in C.

• A variable never has scope in the code before it is declared. That would be silly.

• If a variable is in curly braces, then at the closing curly brace, the variable goes
out of scope. Semi-exception:for loops and functions have variables in parens
just before their opening curly brace; variables declared within the parens have
scope as if they were declared inside the curly braces.

• If a variable isn’t inside any curly braces, then it has scopefrom its declaration
to the end of the file. Semi-exception: you can use theextern keyword to refer
to a variable in another file.

OK, you’re done.
There is no class scope, prototype scope, friend scope, namespace scope, dynamic

scope, extent issues, or special scoping keywords or operators (beyond those curly
braces). Does lexical scoping confuse you? Don’t worry about it. If you know where
the curly braces are, you can determine which variables can be used where.

In fact, most C textbooks (includingModeling with Data) make this more com-
plicated than necessary by talking about functions as separate from curly-brace scope,
rather than being just another example. Here is a sample function, to sum all the values
up to the input number:

int sum (int max){
int total=0;
for (int i=0; i<= max; i++){

100 CHAPTER 8. TECHNIQUE

total += i;
}
return total;

}

Thenmax andtotal have scope inside the function, by the curly-brace rule and
the semi-exception about how variables in parens just before the curly brace act as if
they are inside the braces. The same holds with thefor loop, and howi is born and
dies with the curly braces of thefor loop.

In fact, forget about where they taught you to put curly braces, and let’s just throw
them in wherever we want some more scope restrictions.

You might want them around macros, for example. I’ll have more examples in the
near future, but here’s a simple one:

#include <stdio.h>

#define sum(max, out) { \
int total=0; \
for (int i=0; i<= max; i++){ \

total += i; \
} \
out = total; \

}

int main(){
int out;
int total = 5;
sum(5, out);
printf("out= %i original total=%i\n", out, total);

}

I just turned the above function into a macro, but even as a macro it still needs an
intermediate variable for summing elements. Putting the whole macro in curly braces
allows us to have an intermediate variable namedtotal independent of whatever is
going on outside the macro.

Using gcc -E curly.c , we see that the preprocessor expands the macro as
below, and following the curly braces shows us that there’s no chance that thetotal
in the macro’s scope will interfere with thetotal in themain scope:

int main(){
int out;
int total = -1;
{ int total=0; for (int i=0; i<= 5; i++){ total += i; } out = tota l;
printf("out= %i total=%i\n", out, total);

}

[But we aren’t protected from all name clashes. What happensif we were to writeint out, i=5;

sum(i, out); ?]

8.8. OBJECT-ORIENTED PROGRAMMING IN C 101

Summary paragraph: C is awesome for having such simple scoping rules, which
effectively consist of finding the end of the enclosing curlybraces or the end of the file.
You can teach the whole scoping system to a novice student in maybe ten minutes. For
the experienced author, the rule is more general than just the curly braces for functions
andfor loops, so you can use them for occasional additional scopingrestrictions in
exceptional situations.

8.8 Object-oriented programming in C

22 April 2010

Here are notes on object-oriented programming (OOP) in C, aimed at people who
are OK with C but are primarily versed in other fancier languages.

The OO framework is in some ways just a question of philosophyand perspective:
you’ve got these blobs that have characteristics and abilities, and once you’ve described
those blobs in sufficient detail, you can just set them off to go running with a minimum
of outside-the-blob procedural code. If you want to be strict about it, the objects only
communicate by passing messages to each other. All of this islanguage-independent,
unless you have a serious and firm belief in the Sapir-Whorf hypothesis.

Scope Much of object-oriented coding is distinguished via a method of scoping.
Scope indicates what, out of the thousands of lines of code and dozens of objects you’ve
written down, is allowed to know about a variable. The rule ofthumb for sane code-
writing is that you should keep the scope of a variable as small as possible to get the
job done. Think of a function as a little black box: you want itto have just as many
exposed parts as are necessary to interoperate with the outside world.

From the OOP perspective, this translates into dividing variables into private vari-
ables that are only internal to the object, such as the internal state of the car’s motor,
and things that the whole world can use, such as the location of the car. Thus, every
OO language I can think of definespublic andprivate keywords.

But wait, there’s more: sometimes, you really have to break the rules, just this
once, and check the internal status of the motor. You can makethe status variable
global, defeating the whole mechanism, or you can define afriend function. Below,
we’ll have inheritance, and will also needprotected scope. Sometimes, the::
operator will get you out of a jam.

That is, we can divide the OOP additions to C’s syntax into twoparts: syntax to
give you stricter, finer control over scope, and syntax to override those stricter controls.

How does C do scope, given that it has (depending on how you count) about two
keywords for scope control? The scoping rules for C are defined by the file. A variable
in a function is visible only to the function; a variable outside the functions, at the top
of a file, is visible only in that file.

A typical file.c will have an accompanyingfile.h that simply declares vari-
ables and functions. If another file includesfile.h , then that file can see those vari-
ables and functions as well. Thus, the private variables areinvisible outside the file,

102 CHAPTER 8. TECHNIQUE

and the public variables declared in the header can be used bythe other files where you
choose to includefile.h .

The variables in the header file need to be declared with theextern keyword, e.g.
extern float gas gauge , which indicates that the variable is actually declared
in a single.c file, saydashboard.c , but another.c file that includes this header,
maybemotor.c is being made aware that there is an floating-point variable named
gas gauge declared somewhere external tomotor.c . As noted, the custom is to
put all theseextern s in a header file and be done with it, but if you want to have
especially fine control of scope across files/objects, then you can insert exactly as many
extern declarations as you need exactly where you need them; similarly for function
declarations.

The naming thing Objects let you name functions things likemove andadd and
never worry about interfering with fifty other functions with the same names. This is
nice, but there is a simple C custom to take care of that: prepend the object name. In-
stead of the C++my data.move() , where you just understand that thismove func-
tion refers to anapop data object, you’d have a function with a name likeapop -
data move(my data) . There ya go, crisis averted: no name space clashes. Some
readers somewhere may complain that the name-prepending isugly, to which I re-
spond: care less.

But seriously, go have a look at Joel the guru2 for more on how wonderful naming
similar to this can be.

C already has a scoping system comparable to that of C++ if youuse the one file-
one object rule and a few customs in naming. Adding a whole newsyntax for scoping
on top of this is basically extraneous, and could create confusion now that you’ve got
two simultaneous scoping systems in action.

Inheritance and overloading Overloading functions and operators is dumb. Joel’s
article above has a humorous bit about this, which opens: “When you see the codei
= j * 5; in C you know, at least, thatj is being multiplied by five and the results
stored ini . But if you see that same snippet of code in C++, you don’t knowanything.
Nothing.” The problem is that you don’t know what* means until you look up the type
for j , look through the inheritance tree forj ’s type to determinewhich versionof *
you mean, et cetera.

Say you have ablob object which includes acleave method that splits the blob
in half, and ablobito object that includes acleave method that binds together
internal elements. You have ablob object namedmy b, and,faux pas, think that it
is a blobito object. You call themy blob.cleave() function, expecting that
my b.size will double, but instead it halves.

This may sound like a silly example, but from my experience, the most common
use of OO machinery such as inheritance is where two objects are very similar but
subtly different. Textbook examples:accountant andprogrammer objects that
both inherit from theofficedrone object, or from the U.S.,state anddistrict

2http://www.joelonsoftware.com/articles/Wrong.html

8.8. OBJECT-ORIENTED PROGRAMMING IN C 103

objects that inherit from the genericus division , and are identical except that the
district object has nosenators or representatives .

Those situations where two objects are similar and therefore easily confused are
the ones where we most need a syntax that breaks when we make a mistake in guessing
the type. If you were doing this in C, you would be notified of your error at compile
time (because you’d be callingblobito cleave(my blob) when you should be
calling blob cleave(my blob)). In many interpreted languages, you would be
notified of your error at run time, or sooner depending on the language. In C++, with
appropriately defined methods, you would never, ever be notified of your error. That
is, operator overloading allows you to bypass a large numberof safety checks.

I promised you notes on how C does it, not rants about overloading, so let us move
on to Option B: inheritance via composition. For example, Apophenia has anapop -
data type:

typedef struct apop_data{
gsl_matrix * matrix;
apop_name * names;
char *** categories;
int catsize[2];

} apop_data;

[This essay was originally written in January 2006, and Apophenia has evolved and stabilized since

then. So the sample code is not apop-accurate, but is still fine for getting across the principles discussed

here.]

In OOP-speak, theapop data structure is a multiple-inheritance child of the
gsl matrix andapop name structures (plus an array of strings). All of the func-
tions that operate on these parent objects can act on elements of the childapop data
structure, and life is good. To go further with OOP jargon, C lets you extend a struc-
ture via ahas-amechanism: we have agsl matrix and want to give it names, so we
create a structure thathas-amatrix and names. Typical OOP languages allow you to
extend viais-a, wherein yournamed matrix is-a gsl matrix plus the additional
elements to add names. I’m no OO pro, but I think you’re supposed to read those
sentences like the Italian chef in a Disney movie.

On the one hand, having onlyhas-ato work with means that if a function acts
on agsl matrix * you can’t transparently call, e.g.,apop pca(apop data -
set) [PCA=principal component analysis]; you have to know that there’s agsl matrix
inside the data set and that’s what’s being operated on:apop pca(apop data -
set- >matrix) . On the other hand, you can not accidentally call the wrong instance
of the function and then spend an hour wondering why the function didn’t operate the
way you’d expected.

So on the minus side, the internals of the object aren’t hidden from you—but on
the plus side, things aren’t hidden from you.

The void, templates And finally, for when you really don’t want to deal with types,
there’s thevoid pointer. Here’s a snippet from an early draft of Apophenia’sapop -
model type:

104 CHAPTER 8. TECHNIQUE

typedef struct apop_model{
char name[101];
apop_model * (* estimate)(apop_data * data, void * parameters);
...

} apop_model;

Two things to note from this example. First, including a function inside a struct
is a-OK. We’ll declare a GLS estimation function asstatic apop estimate *
apop estimate GLS(apop data * set, gsl matrix * sigma) , declare the
model via something like:apop model apop GLS = {"GLS", apop estimate -
GLS, ... }; and then we can callapop GLS.estimate(data, sigma); just
like we would in C++-land.

[If you didn’t follow the syntax of declaring hooks for functions, see p 190 ofModeling with Data.]

Second, there’s thevoid pointer at the end of the declaration of theestimate
method in the structure. Notice that that second argument ofapop estimate GLS
is typed as agsl matrix * , even though we’re plugging it in where the template
asked for avoid * . [Non-OOP quiz question for the statisticians: why is this a terrible way to

implement GLS?]Other models require different parameters, like the MLE functions take
parameters for the search algorithm, but they’re also called via the samemodel in-
stance.estimate(data, params) form.

It’s up to you, the user, to remember what types make sense forwhat models, be-
cause thevoid pointer is your way of saying ”Dear C type-checker: leave me alone.”
The type-checker will still check that you’re sending a pointer and not data, but from
there you’re free to live it up and/or segfault.

The void pointer is how you would implement template-like behavior. For example,
here is a linked list library (gzipped source) that I wrote when I was avoiding harder
work. It links together void pointers, meaning that your list can be a linked list of
integers, strings, or objects of any type. How’s that for a nice, concrete example.

The primary benefit from C++’s template system over usingvoid pointers is that
the template system will still check types. Personally, I’ve rarely had problems. If I
have a list namedlist of data , I know to not addgsl matrix es to it. Not having
type-checking means that it’s up to me to make sure that the wrong thing is never the
intuitive thing to do.

By the way 1: notice howapop estimate GLS is declared to bestatic , so
outside the file it’s only accessible as theapop GLS.estimate() method.

By the way 2: I can’t recall ever using this, but if you wanted to, you could even
type-cast inside the function:

void move(void * in, char type){
if (type == ’a’)

a_move((a_type *) in);
if (type == ’b’)

b_move((b_type *) in);
}

8.9. YET ANOTHER GIT TUTORIAL 105

This self I’ve only wanted something like thethis or self keyword maybe twice,
but I have no idea how to gracefully implement it in C, if at all. [Maybe with the
preprocessor?] So I’m open to suggestions on this one.

OK, there you have it: most of the basics of object-oriented programming imple-
mented via relatively simple techniques in C. The moral: object-oriented coding is a
method and a mindset, not a set of keywords.

Refs More essays along the same lines:
A full book3 that goes into great detail about the above simple tricks, and also goes
much further in implementing something that looks like C++.

An article that focuses on encapsulation, with some suggestions on hiding data.
Another article that blew way past my attention span, and basically shows you how

to write a C++ compiler in C. Given my disdain for overloadingand strict inheritance
(as opposed to inheritance via composition), I wasn’t really into it.

8.9 Yet another Git tutorial

8 November 2009

Git is a revision control system, meaning that it is designedto keep track of the
many different versions of a project as it develops, such as the stages in the development
of a book, a tortured love letter, or a program.

Here’s a typical story: you begin chapter one, and commit it to the repository. Your
coauthor is working on chapter two, and does the same. Tomorrow, you pull out the
current version of the repository, and both chapters are nowon hand for you to revise.
Later, your coauthor calls and tells you that she was robbed and used her laptop to block
a bullet, and you reassure her that it’s no problem, because the draft is safely stored in
the repository. She gets a new laptop, checks out the currentstate of the project, and is
back to revising your and her work so far.

I typically put even small solo projects under revision control, because it makes
me a better writer/coder: I’m more confident deleting thingswhen I know that they’re
safely stored should I want them back. Git makes this easy, asyou’ll see below.

Git’s history is relevant to its use. It was written by the guywho originally wrote
Linux, Linus Torvalds, with the intent of supporting Linux development. Linus is a
communist in the best possible way, and thus pushes Git at a means of easy collabora-
tion among equals. So if you like the idea of collaborative development, and especially
if you’re a computer geek, then Git will enthuse you.

To me, the most interesting thing about Git is just how many tutorials there are
about it. It’s a complex system, and people have interestingreactions to it. Some tu-
torials break through the complexity by just givingto do this, type thisinstructions;
others get enthusiastic and effuse about the clever structure of the system more than
showing you how to use it. For my purposes, I need something toexplain the underly-
ing concepts, and not condescend to the reader, but not confuse the story with all the

3http://www.planetpdf.com/developer/article.asp?cont entid=6635

106 CHAPTER 8. TECHNIQUE

details that are basically irrelevant to those who don’t need to create clean patches (or
know what a patch is) and don’t see a need to cryptograpicallysign our book chapters.

I will assume that you are familiar with the basics of POSIX directories, files, text
editing, and the usual basic commands likecp , mv, rm, and so on.

The structure A revision control system does two difficult tasks: it has to organize
a pile of slightly different versions of a project, and it hasto merge together revisions,
say when you and a pal are separately working on the same project and finally come
together.

That first part is already enough to get lost: you have the version of the file before
you, the fifteen earlier versions you wrote, and the twenty earlier versions that your
colleague wrote. As noted above, the modern trend is toward distributed version con-
trol, meaning that you may have a repository in your home directory, and there may be
a remote repository, and all those repositories have some number of versions. All this
multiplicity is great because every little change is tracked, history can be interrogated
and compared, and completely screwing up your local repository just means you have
to start over with a new copy.

But all this multiplicity means that you need to know the address of where you
are and where you want to go—a typical simple setup, like the one in Figure 8.2, is
already overwhelming if you don’t know how to get around. So,we will begin with an
overview of the repository-branch-version-file hierarchythat you will be navigating.

• There may be severalrepositories.

• Each repository holds severalbranches.

• Each branch holds severalversions(akacommit objects).

• At any one time, you are looking at exactly one version of the project, and the
several files that comprise that version.

The repository The repository is a pile of versions, in a binary format that Git can
read and you can’t. Here is how you would create a new one, in a given directory that
will be the repository from then on:

mkdir new_project
cd new_project
git init

You now have a blank repository.[If you are putting an existing project under revision control,

you will need to add existing files to the index withgit add . ; see below.]Git stores all its files in
a directory named.git , where the dot means that all the usual utilities likels will
take it to be hidden; after the init step, you can look for it via, e.g.,ls -a .

This is the first embodiment of Linus’s egalitarian communism: he wanted to make
it easy to create lots of repositories on lots of machines. The key to this is that the.git
subdirectory holds all the information, so copying your project directory (including the
.git subdirectory) generates a new, entire respository. If you want to back up your
project and repository, just recursively copy your projectdirectory:

8.9. YET ANOTHER GIT TUTORIAL 107

Figure 8.2: ¡Multiplicity! Here, there are three places where a version of the project
could be: a distant repository, in your local directory in a repository named.git , or
checked out in your local working directory. In the story so far, there are four versions:
1a1a1a , which is present in both the local and remote repositories;2b2b2b , where
you reallocated Gaul and became a teapot;3c3c3c , where someone else fixed a typo
in divsaand checked it in to the distant repository; and the version you are looking at
in your current directory.

cp -r new_project project_bkup

Versions Now create a new file for yourself, using your favorite text editor or what-
have-you.4 Git doesn’t know about this file yet; you have to tell the machine about it
using the index (discussed below). For now, try

git add .

to add to Git’s index everything in the current working directory (in UNIX-speak,.).
Now you can save your work to the repository in your working directory, or in

revision control jargon, commit your changes:

git commit -a -m "What I’ve been doing up until this check-in. "

4Git, like every revision control system I know, works best around the POSIX paradigm of relatively
short lines of text. Computer code naturally looks like this, as does typical human-written plain text (with
linewrap enabled so you don’t have one line per paragraph). If you’re using a binary format like a word
processor document, then Git will have trouble making meaningful merges, and you’re basically stuck using
whatever revision control the word processor vendor gave you (if any).

108 CHAPTER 8. TECHNIQUE

You can make more changes to your text file, and then re-rungit commit -a
-m "..." as often as you wish, thus creating a history of commits that you’ll be able
to refer to below. Notice that once you’ve put a file into the index, you don’t need to
re-rungit add5

I’ve been avoiding the termcommit objectsas being a little too jargon, but the jar-
gon does get across the idea of a single committed blob, whichis treated as a unit
for our purposes. You can usegit log to get the list of commits in your his-
tory. The log shows two relevant pieces of information: the 40-digit SHA1 crypto-
graphic hash, and the human-language message you wrote whenyou did the com-
mit. The SHA1 hash is a computer-scientist clever means of solving several problems,
and is the name you will use for the commit. Fortunately, you need only as much
of it as will uniquely identify your commit. So if you want to check out revision
#fe9c49cddac5150dc974de1f7248a1c5e3b33e89, you can do so with

git checkout fe9c

With that command, you’ve gone back in time, and have in your current directory
whatever you had back then. Take notes, copy off that paragraph you wish you hadn’t
deleted, then

git checkout master

to return to the head of the master branch (which is where you started off, being
that we haven’t discussed creating new branches yet).

[I suggested that you take notes and make observations, but not that you change anything. ¿What would

happen if you were to build a time machine, go back to before you were born, and kill your parents? If we

learned anything from science fiction, it’s that if we changehistory, the present doesn’t change, but a new

alternate history splinters off. So if you check out an old version, make changes, and check in the changed

version, then you’ve created your first branch off of the master branch.6]

Git is designed to make it as easy as possible to bounce back toan alternate version
and bounce back to where you were, as often as you need. But this may not be ideal,
because you may want to have both versions living side-by-side. The easiest way to do
this is to just make yourself a second repository.

cp -R /path/to/maindir new_tempdir
cd new_tempdir
git checkout fe9c

Now you can do side-by-side comparisons between the main version in the main
repository and your disposable copy.[There’s also agit clone command, see below, that does

about the same as this in a slightly slicker manner.]

5Much of git’s advanced technique is about rewriting the history to produce a smoother course of events.
This document makes a point of not worrying about the history, but I will mention one nice feature to
keep your log from filling up with small commits. After you commit, you will almost certainly slap your
forehead and realize somthing you forgot. Instead of just doing another commit, you can dogit commit
--amend -a to add to your last commit.

6You haven’t named your branch, which can create problems. Getting ahead of the story, if you ever
call git branch and find that you are on(no branch) then you can rungit branch -m new -
branch name to name the branch you’ve just splintered off to.

8.9. YET ANOTHER GIT TUTORIAL 109

I’ve found the ability to quickly jump around in time to be immense fun, and has
made me a more confident editor. When in doubt, I make the cut, and know that the
worst punishment for an error is the small bother of checkingout an old version.7

The index versus your files We’ve looked at prior check-ins; now ¿what will the
nextcheck-in look like? Git maintains what is called the index, which is the nascent
list of files that will become a commit object when you next call git commit . That
index is not identical to the files you see when you do a directory listing, for a few
reasons. First, many systems produce annoying files like logfiles, object code, and
other mid-processing cruft, and you don’t want those takingup space in the repository.
There are also advanced commit strategies wherein you may change several files, but
want to save only the changes you’d made in one or two.

Regardless of the rationale, bear in mind that the working directory you are looking
at is probably a mix of files Git is tracking and files Git doesn’t care about. If you want
to add a new file to the repository, remove an old one, or fix the name of a file, you’ll
need to do one of:

git add newfile
git rm oldfile
git mv flie file

so that the change is evident both in the working directory and in the index. As
for files that you are modifying but are not shuffling around inthe filesystem, you
technically have to add those one by one as well by runninggit add modified -
file with every single commit, but the-a in the commandgit commit -a tells
git to save all modifications on known files (including removal), thus saving you all
that tedium. In my own work, I have never encountered a reasonto commit without the
-a flag, but perhaps you may one day run across something.

But do remember thatgit add, rm, mv only change the index of what the
next commit will look like. The commit won’t actually happenuntil you say so with
git commit -a .

Branches To this point, you have been alternating between doing work and saving
it via git commit -a , thus producing a sequence of committed versions of your
program. That’s a branch.

Perhapsthreadwould be a better term, being that this represents a single thread of
your work conversation. By default, you are on a branch namedmaster. Other threads
come up in two manners: your own work may digress, or you may have colleagues
who are following their own threads. The typical story in your own work would be
that you are trying something speculative, which may or may not work. By creating a
new branch, you are ensuring that you have something stable in the master branch at
all times; you can merge the experimental branch back into the master thread later if
all works out (where merging will be covered below).

¿What branch are you on right now? Find out with

7See also, e.g.,git show fe9c:oldfile to just display a single file from an old version without
doing a full checkout.

110 CHAPTER 8. TECHNIQUE

git branch

which will list all branches and put a * by the one that is currently active.
Now create a new branch. There are two ways to do it:

git branch new_leaf
git checkout new_leaf

#or equivalently:

git checkout -b new_leaf

There are really two steps here: establishing a new branch inthe repository, then
changing your working version to make use of that branch. Thetwo-command ver-
sion makes that explicit; the singlecheckout -b form is provided because it’s so
common to want to immediately use the branch that you are creating.

Having built a new branch, you can switch between branches easily. E.g., to switch
back to the master branch:

git checkout master

You can see that the branch checkouts, likegit checkout newleaf or git
checkout master , have the same syntax as that infernal SHA1 syntax likegit
checkout fe9c . The reason is that the name of the branch is really just a synonym
for the SHA1 hash that is the last item on that branch (aka thebranch head). Use them
interchangeably, though I’m guessing you’ll lean toward using the branch name.

Merging To this point, everything has been about creating new versions, and jumping
around between versions. Now for the hard part: you have a version, your colleague
has a version, and they differ.

The command is simple enough. You have on your screen a current version, and
you want to fold in the revisions from version fe9f. Then

git merge fe9f

will do the work. Of course, you can use a branch name as well, like git merge
new leaf .

For some things, the system will have no problem merging together the two threads:
if your coauthor was working only on the intro to chapter three and you were working
only on chapter three’s conclusion, that’s easy to merge.

But if you were both wrestling with the same paragraph, then the computer will be
confused. It will tell you that there are conflicts, and writeboth into the file in your
current directory. You will then have to open the file(s) in your text editor, and find the
place where git wrote both versions for you to compare and choose from.

If you were to merge revision3c3c3c from the remote repository into the cur-
rent working revision (i.e. the head), thenfile2 would probably wind up looking
something like this:

8.9. YET ANOTHER GIT TUTORIAL 111

I’m a little teapot,
<<<<<<< HEAD
short and stout
=======
round and fat
>>>>>>> 3c3c3c

Here, Git finds a single line with two different versions, andit can’t rely on timing
or other heuristics to pick one. So, it shows you the two versions, and it is up to you
as a human to decide what to do. The solution will often require human contact with
another author (IM is a perfect medium for this). Git can’t call your coauthor, but it
can at least point you to the exact line where differences exist.

The other type of conflict, which is just annoying, is when your colleague has
renamed a file or moved it from one directory to another. Git typically won’t just move
the darn file for you, but will instead list it as a conflict for you to deal with. Moving
files can create other awkward issues; for example, if you aredoinggit pull from
a subdirectory that your coauthor has deleted, you’ll get entirely confused errors.

Here is the procedure for committing merges:

1. git merge a branch .

2. Get told that there are conflicts you have to resolve.

3. Check the list of unmerged files usinggit status .

4. Pick a file to manually check on. Open it in a text editor and find the merge-
me marks if it is a content conflict; move it into place if it’s afile name or file
position conflict.

5. git add your now fixed file .

6. Repeat steps 3–5 until all unmerged files are checked in.

7. git commit to finalize the merge.

I have always found merging to be unnerving. There is a computer modifying your
files, without even telling you what it is modifying. Unlike the long list of versions and
your endless power to shunt branches, the merge algorithm ismore-or-less a black box,
and you just have to trust it. In that context, it’s a somewhatgood thing that the machine
sometimes refuses to auto-merge and demands human attention. If the computer does
go too far and makes a total mess of things, you can take recourse knowing that you
have the previous version safely stowed.

The stash It doesn’t take long working with Git to discover that it doesn’t like doing
anything when there are uncommited changes in the current working directory. It typ-
ically asks you to commit your work, and then do the checkout or such that you had
intended.

One thing you can do in this case is a variant of the merge routine above: ask
git status which files are tracked but modified;git add those files; thengit

112 CHAPTER 8. TECHNIQUE

commit your changes. Once your working tree, the index, and the latest commit are
all in harmony, you can go back to your original plan.

Another sometimes-appropriate alternative isgit reset --hard , which takes
the working directory back to where you had last checked out.If the command sounds
severe, it is because you are about to throw away all work you had done since the last
checkout.8

The other option is thestash, a quick-to-use branch, with a few special features,
like retaining all the junk in your working directory. Here is the typical procedure:

git stash
git checkout newleaf #or another commit, or what-have-you
#do work here
git checkout master #or the branch you had stashed from
git stash pop

So this is the above procedure of checking out, doing work, and then returning to
the current version, but you stash your in-progress workingdirectory beforehand and
pop it back into place afterward.

Popping the stash works by merging the stash’s semi-branch back to whatever is
currently checked out, which is why you have to check out the commit you had been
on before going exploring in the history: doing the merge is trivial if you have checked
out the commit that you had been on when you started, and couldbe a mess if you are
elsewhere.[The ability to apply the stash onto a separate commit allowsfor creative merging strategies

which you may find use for if you are feeling clever.]

Remote repositories So far, I’ve talked only of checking out versions and branches
that are in the respository of the directory you are in right now. But you can copy
branches across repositories, which is how sharing happens. As alluded above, there
can be amusing reasons for cloning a directory to another directory, and then merging
changes between them.

To do all this, you need to be able to copy a branch from anotherrepository. And
to do that, you will need to name the other repository. Do thisvia

#for an on-disk remote repository:
git remote add my_copy /path/to/copy

#and for a distant remote repository:
git remote add distant_version http://...

That is, you will give a nickname for the repository, then a locator. There are many
options for locators; the odds are good that the maintainer of any given repository
handed you a locator to use, so I won’t bore you with a list of options here.

8By the way, you can reset individual files by just checking them out. I recommend this syntax:git
checkout -- one file , after whichone file has reverted to its state as of the last checkin, and all
changes lost.

8.10. GIT STATUS INTERACTIVE 113

If you are joining a project that already has a repository, running git clone
/path/to/copy will set up a local copy and add aremote label oforigin , set
to the location of that parent repository.

A plain git remote will give you a list of remote repositories your repository
knows about. You will probably just assign one remote and be done with it, but you
have the power to live Linus’s dream of concurrently passingfiles among several of
your peers’ several repositories.

Having established a remote, you also have more branches to choose from: trygit
branch -r to list remote branches (orgit branch -a to list all branches, local
and remote).

There are a few ways to get a remote branch:

git checkout -b new_local distant_version/master
#or

git pull distant_version master

The first version uses the plain checkout mechanism using theremote tag you got
via git branch -r , and uses the-b flag to create a name for the new branch you
are about to create (otherwise you’d be stuck on(no branch)). Thepull version
merges into whatever you are working on now. You are probablygetting things from
the repository to bring your own work back up-to-date and in sync, so you probably
want to usepull instead ofcheckout .

The converse ispush , which you’ll use to update the repository with your last
commit (not the state of your index or working directory).

git push distant_version

When somebody had made another commit to the repository while you were work-
ing, then you will first need to do anothergit pull , slog through the merging proce-
dure, and then push back the cleaned-up final version. This iscommon in team projects,
and the error you get (about fast-forward merging) is entirely unhelpful.

git help That’s all I’m giving you, and it should be enough for you to keep versions
of your work, confidently delete things, merge in your colleagues’ work, and be able to
keep your bearings in Git’s repository/branch/version/index system. From there,git
help and your favorite search engine will teach you a whole lot of ways to doing these
things more smoothly, and many of the tricks that I didn’t cover here.

8.10 Git status interactive

12 December 2009

One of the first things that struck me as nice about Git was the status command,
which produces something just shy of a script for revising the status of all the files. It
even gives you tips about how to do common tasks.

114 CHAPTER 8. TECHNIQUE

I got even more excited when I sawgit rebase --interactive , which
generates a semi-script, opens it for you to edit, and then runs the thing automatically.
That was smooth.

So I expected there’d be a similar procedure likegit status --interactive ,
which, if it existed, would work like this:

• You typegit istatus .

• Your favorite editor opens. There, you see the output fromgit status , plus
instructions for some basic commands: put ana at the head of a line to add a file,
an i to ignore it from now on, anea to edit then add (which you’ll do if you’re
merging), anr to remove the file from the repository, and so on.

• You exit, and your instructions are run.

Git doesn’t do that. So I wrote a demo script to make that happen, git-status-
interactive9.

Click that link to save the script to your hard drive, and makeit executable via the
usualchmod 755 git-status-interactive . You probably want to alias the
script using Git’s aliasing system. For example, to allow thegit istatus command
I’d shown above, try this command from your bash prompt, in a single git repository:

git config --add alias.istatus \!/your/path/to/git-stat us-interactive

Or if you have the permissions to make global changes to the git config:

git config --global --add alias.istatus \!/your/path/to/ git-status-interactive

Some further notes The script is a demo—dead simple, with no serious error check-
ing. To some extent it’s a feature request: Dear Git team, please implement something
like this in Git, but competently. Also, dear readers, please drop me an email if you’ve
improved this thing for the better.

[By the way, Git does havegit add -i , which behaves very differently from the edit-a-generated-

file mechanism fromgit rebase --interactive . git add -i doesn’t let me tick off files to

ignore, and doesn’t help immensely during merging; though it will give you more control when adding, like

committing changes to sections of a file.]

Apart from git status and the shell, I use exactly one program to make this
happen: Sed. The prep step runs Sed to take in the output ofgit status and
then remove non-comment lines and insert instructions; thepost-editor step run Sed to
replace the one-character markers with the full commands. That’s all.

Because the modified file just runs as a shell script, you can add other commands
as you prefer. For example, replacing the# at the head of the line with anrm turns
it into a standard remove command, or you canmv a file that git complains is in the
wrong place (probably due to merging issues), et cetera.

In case you missed the link in the text above, download git status interactive10

here.
9http://modelingwithdata.org/asst/git-status-interac tive

10http://modelingwithdata.org/asst/git-status-interac tive

8.11. BETTER VARIADIC FUNCTIONS IN C 115

8.11 Better variadic functions in C

3 June 2009

I really dislike how C’s variadic functions are implemented. I think they create lots
of problems and don’t fulfil their potential. So this is my effort to improve on things.

A variadic function is one that takes a variable number inputs. The most famous ex-
ample isprintf , where bothprintf("Hi.") andprintf ("%f %f %i \n",
first, second, third) are valid, even though the first example has one input
and the second has four.

Simply put, C’s variadic functions provide exactly enough power to implement
printf , and nothing more. You must have an initial fixed argument, and it’s more-or-
less expected that that first argument provides a catalog to the types of the subsequent
elements, or at least a count. In the example above, the first two items are expected to
be floating-point variables, and the third an integer.

There is no type safety: if you pass anint like 1 when you thought you were
passing afloat like 1.0, results are undefined. If you think there are three elements
passed in but only two were passed in, you’re likely to get a segfault. Because of
issues like this, CERT, the software security group, considers variadic functions to be
a security risk11 (Severity: high. Likelihood: probable).

I understand that the designers of the system are reluctant to impose too much
magic to make variadic functions work, like magically dropping into place annargs
variable giving an argument count. So today’s post is an exercise in how far we can get
in implementing decent variadic functions using only ISO C.To give away the ending, I
manage some of the things we use variadic functions for in a safe and more convenient
manner—optional arguments work very well—but it takes manylittle tricks, and I’m
still short of trueprintf functionality.

Designated intializers First, a digression into a pair of nifty tricks that C99 gave us:
compound literals and designated initializers. I find that many people aren’t aware of
these things, because they’re learning C from textbooks written before 1999, and using
compilers that may not use the 1999 standard by default.

Darn it people, it’s been a decade. This is not new.
The idea is simple: if you have astruct type, you can use forms like these to use

an anonymous struct wherever it’s appropriate:

typedef struct {
int first, second;
double third;
gsl_vector * v;

} stype;

stype newvar = {3, 5, 2.3, a_vector};

11https://www.securecoding.cert.org/confluence/displa y/seccode/
DCL11-C.+Understand+the+type+issues+associated+with +variadic+functions

116 CHAPTER 8. TECHNIQUE

stype nextvar = {3, 5};
newvar = (stype) {.third = 3.12, .second=5};
function_call((stype) {.third = 8.3});

In each case, a full struct is set up, and the compiler is smartenough to know what
goes where among those elements you specified, and sets the other elements to zero or
NULL.

These sorts of features that we have for initializing astruct are exactly the sort
of thing many more recent languages put into their function calls: default values are
filled in, and named elements are allowed via designated initializers.

At the end of the example, I put a compound literal inside a function call, so we are
technically calling a function using these pleasant variable-input features, but it’s not
yet looking much likeprintf .

Cleaner function calls We can clean up the struct-to-function trick to get a lot closer
to variadic functions. Here’s the agenda for making this work:

• For each function, set up a struct where the elements of the struct are the inputs
to the function.

• Produce a shadow function whose sole input is that struct, which sets the default
vaules and then calls the original function.

• Write a wrapper macro so that the instead of the user having totype the full
compound literals formf((ftype) {arg1, arg2 }) , they can just type
the usualf(arg1, arg2) .

So, here it is. The first third is a set of general macros, the second third sets up
a single function, and the last third actually makes use. This program should compile
with any C99-compliant compiler. After the code, I’ll have some detailed notes to walk
you through it.

#define varad_head(type, name) \
type variadic_##name(variadic_type_##name x)

#define varad_declare(type, name, ...) \
typedef struct { \

__VA_ARGS__ ; \
} variadic_type_##name; \

varad_head(type, name);

#define varad_var(name, value) name = x.name ? x.name : (val ue);
#define varad_link(name,...) \

variadic_##name((variadic_type_##name) {__VA_ARGS__})

///////////////////// header + code file

8.11. BETTER VARIADIC FUNCTIONS IN C 117

varad_declare(double, sum, int first; double second; int t hird;)
#define sum(...) varad_link(sum,__VA_ARGS__)

varad_head(double, sum) {
int varad_var(first, 0)
double varad_var(second, 2.2)
int varad_var(third, 8);

return first + second + third;
}

///////////////////// actual calls
#include <stdio.h>

int main(){
printf("%g\n", sum());
printf("%g\n", sum(4, 2));
printf("%g\n", sum(.third=2));
printf("%g\n", sum(2, 3.4, 8));

}

• There are three macros in the first section, roughly corresponding to the three
steps of the agenda.varad declare declares a special type and a function to use
that type. Notice that the third and later arguments to the macro go into the struct, not
a function header, so variables are separated by semicolons. varad var sets default
values for each variable.varad link is used to clean up the function call.

• The second third sets up a single function. The bulk declaresthat intermediate
function that takes in a struct, sets default values, and calls the real function.

• There is one more macro in this section, which needs to be rewritten for every
new function. It’d be great if there were a macro to just churnout this trivial macro
for each new function, but you can’t write macros that generate macros. Why not? I
dunno. Seems like it wouldn’t be a big deal for the preprocessor, but them’s the rules.
The too-simple preprocessor is my second big complaint about C.

• The main part of the intermediate function has a line for eachelement of the
struct, declaring an intermediate variable and setting a default value. The compiler gave
missing elements a default value, but we often want the default to be something other
than zero. We can also have more intelligent defaults based on variable information,
like maybeint varad in(third, first * 3) .

• The third part is a call to the function we’ve set up, and you can see that it works
great: we can give it no arguments, all arguments, named arguments, or whatever else
seems convenient, with no regard to the internal guts from prior sections.

118 CHAPTER 8. TECHNIQUE

Infinite input OK, so far, the result looks much more modern relative to C’s standard
fixed inputs. It allows optional arguments, and named arguments. It checks types, and
complains during compilation if you’ve got mismatched types, meaning that a lot of
the security holes of the standard variadic form are gone.

But we want more from our variadics than just optional arguments: we’d like to
specify arbitrary-length lists. Can we declare a structurethat could take an arbitrary
number of inputs, such as a function to sumn inputs?

The short answer is no.[The long answer: the last element of a struct can be an array of in-
determinate size, to be allocated at compile-time. When theanonymous struct is being generated for the
function call, a compiler could count the elements at the endof the list and allocate the variable-size array
appropriately.

However, this depends on whether the anonymous struct is dynamic or static. By static, I mean some-
thing produced at the initialization, like the constants orglobal variables; by dynamic, I mean variables that
are initialized along the way during the run. For static variables, the variable-length last argument will be
stuck in the form set at the first allocation; for dynamic variables, there are more options. So what are the
anonymous structs used for the function calls here? It is my reading that the ISO C standard doesn’t demand
things one way or the other, so we can’t rely on dynamic allocation of the type we’d get elsewhere via a line
like x = (structtype) {1, 2, {3, 5, 9, 10 }}, where the variable-lenght allocation would be
valid.

Also, for an array of fixed length, you can usually get the sizebysizeof(list)/sizeof(list[1]) .

So if the system allocated the right-sized list, you wouldn’t even need a separatenargs element taking up

space.]

We’re instead stuck just making up a size for an element of thestruct, like 1,000,
and letting the compiler pad it with zeros. Given that we generally use variadic arrays
for lists of items hand-typed into the code, and array inputsfor lists of truly arbitrary
length, we can probably get away with 1,000 inputs max, but it’s certainly not ideal.

//Put the macros from the first third above in "variadic.h".
#include "variadic.h"

varad_declare(double, sum, int first;
double second; int third[1000];)

#define sum(...) varad_link(sum,__VA_ARGS__)
varad_head(double, sum) {

int varad_var(first, 0)
double varad_var(second, 2.2)
int * varad_var(third, NULL);

double sum = first + second;
for (int i=0; i< 1000; i++)

sum += third[i];
return sum;

}

int main(){
printf("%g\n", sum());
printf("%g\n", sum(4, 2));
printf("%g\n", sum(.third={2}));

8.12. TIP 1: USE A MAKEFILE 119

printf("%g\n", sum(2, 3.4, {8, 8}));
}

#endif

So thethird element can have variable length, as desired. If you’re not sure of
the type coming in, the last element can be an array ofvoid * , wherevoid * is
your signal to the compiler that you’re willing to take your chances on types and have
a catalog or system on hand to do your own casts.

How’re we doing? So there’s the story: we can do a lot better with our variable-
length function calls than we do, and it’s not even somethinginvolving crazy re-writing
of everything. Standard C already gives us the tools to go 90%of the way.

However, it’s a frickin’ pain to set up. C’s preprocessor is limited, and we had
to write several macros to make this happen. For every function, the namespace has
to have another auxiliary function and a type floating around. You won’t notice this
normally, but it can create quirks in the debugger and other places that expect a little
more normalcy out of the code base.

Apophenia uses this setup for a few dozen functions, but witha few more tricks.
Notably, everything is wrapped in#ifdef s to let everything degrade to the standard
function call if needed. Many things beyond the compiler eatC code, like documenta-
tion generators, interface generators, &c. Even though allthe above is 100% standard
C compliant, some systems like the setup more than others.[I also wrote a sed script to

generate all this boilerplate from appropriate markers. The script also gets around the problem that we can’t

use the preprocessor to generate macros.]

OK, summary paragraph: we need to fix C’s variadic function calling scheme,
which is built aroundprintf to the detriment of many other possibilities, and even to
the detriment of security. Being that we can already do most of what we want via ISO
C99, we can fix them without introducing incompatibilities or changing the character
of C. But given the amount of extras and tricks involved, and given that we still don’t
quite achieve proper variadic functions, there’d need to besome fixes in the language
itself to update variadic functions to a modern form.

8.12 Tip 1: Use a makefile

1 October 2011
level: Start here
purpose: Worry about compilation details once and only once

On the scale fromworks out of the boxon one end toinfinitely configurable and
tweakableon the other, the C compiler is far on the tweakability side. But correctly
tweaking the compiler is a problem you need to solve once, andthen get on with your
life. The solution is themakefile, which is basically an organized set of variables and
shell scripts.

If your program has only one.c file, here’s themakefile for you.

120 CHAPTER 8. TECHNIQUE

OBJECTS =$(P).o
CFLAGS = -g -Wall -std=gnu99 -pthread -O3
LIBS=

c: $(OBJECTS)
gcc $(CFLAGS) $(OBJECTS) $(LIBS) -o $(P)

$(OBJECTS): %.o: %.c
gcc $(CFLAGS) -c $< -o $@

Usage:

• Once ever: save this (with the namemakefile) in the same directory as your
.c files. Make certain thegcc lines are indented with a tab, not spaces.[Otherwise

you’ll get amissing separator error. Yes, this is stupid.]

• Once per session: Set the variableP as the name of your program from the
command line:export P=your program (notyour program.c).

• Every time you need to recompile: typemake

Tweaks:

• If you have a second (or more) C file, addsecond.o third.o , et cetera on
theOBJECTSline (no commas, just spaces between names).

• If, when you run the debugger, you find that too many variableshave been op-
timized out for you to follow what’s going on, then remove or comment out the
-O3 bit (which sets Optimization level three).

• If you are using a not-entirely-standard library of functions, then you will need
to add the library on theLIBS line and the include path on theCFLAGSline.
Try typingpkg-config on your command line; if you get an error about spec-
ifying package names, then great, you have pkg-config and canuse it like:

LIBS=‘pkg-config --libs apohenia glib-2.0‘
CFLAGS=[everything above plus:] ‘pkg-config --cflags apo henia glib-2.0‘

If you get an error aboutpkg-config not being found, you’ll have to specify
each library and/or its locations:

LIBS=-L/home/b/root/lib -lweirdlib
CFLAGS=[everything above plus:] -I/home/b/root/include

Tune in next time for an extended example.

• After you add a library to theLIBS andCFLAGSlines and you know it works
on your system, there is little reason to ever remove it. Do you really care that
the final executable might be 10 kilobytes larger than if you customized a new
makefile for every program?

8.13. TIP 2: USE LIBRARIES 121

OK, you’re done! After youexport P=your program , you can runmake and
watch the compiler run and/or spit out errors, and never worry about what all that junk
in the makefile actually means.

There will be limited plugs forModeling with Datain this tip-a-day series, but I
think it’s worth mentioning that Appendix A goes into great detail about tweaking the
makefile to do great things.

To do:
Here’s the world-famoushello.c program, in two lines:

#include <stdio.h>
int main(){ printf("Hello, world.\n"); }

Save that and themakefile to a directory, and try the above steps to get the
program compiled and running.

8.13 Tip 2: Use libraries

3 October 2011

level: You have the syntax down and want to get real work done
purpose: Use 40 years of prior scholarship to your advantage

Twenty years ago, it was evidently pretty difficult to pull down a good library of
functions and make use of them in your current project. I say this because I couldn’t
find any C tutorials from the period that show you how to use a non-standard library
to do real work. Which is why you can find C detractors who will say self-dissonant
things likeC is forty years old, so you have to write every procedure fromscratch in it.

Now, it’s easy. We have the GNU to thank for much of this, because free libraries
now outnumber for-pay libraries, and so there are package managers and other such
systems to let you pull down a library with a few mouse clicks.If you have to create
windows for your program, deal with XML, encode audio streams to MP3, or manip-
ulate DNA sequences, ask your package manager for a library before you start from
zero.

Besides the politics of free/open source/libre/whatever,the GNU also has a set
of tools that will prepare a library for use on any machine, bytesting for every known
quirk and implementing the appropriate workaround, collectively known as theautotools .

Writing a package to work under autotools is, um, hellish, but the user’s life is
much easier as a result. Also, it’s a logical extension to Tip#1, because now that you
know that having a makefile will simplify compilation, it’s only logical that you’d use
a tool to generate a makefile for you.

To do:
Let’s try a sample package, shall we? The GNU Scientific Library includes a host of
numeric computation routines. If you ever read somebody asking a question that starts
I’m trying to implement something fromNumeric Recipes in C. . ., the correct response
is download the GSL, because they already did it for you.

122 CHAPTER 8. TECHNIQUE

One of the things I♥ about using POSIX12 is that I can give people unambiguous
and quick tech support over IM. Noclick here, then look for this buttonstuff, just paste
this onto the command line (assuming you have root privileges on your computer):

wget ftp://ftp.gnu.org/gnu/gsl/gsl-1.15.tar.gz #downl oad
tar xvzf gsl- * gz #unzip
cd gsl-1.15
./configure #determine the quirks of your machine
make #compile
make install #install to the right location---if you have pe rmissions

If you get an error about a missing program, then use your package manager to
obtain it and start over.[Package managers are one of those places where I can’t just tell you what to

type, which is one solid reason why I’m not using one here.]

If you are reading this on your laptop, then you probably haveroot privileges, and
this will work fine. If you are at work and using a shared server, the odds are low that
you have superuser rights. If you don’t have superuser rights, then hold your breath for
two days until Tip #3.

Now you’ll need to indicate in your makefile that you will be linking programs you
write to the library you just installed. The makefile from Tip#1 had a blank⁀LIBS line;
this is where you start filling it in.

If you have pkg-config on hand, then use it like so:

LIBS=‘pkg-config --libs gsl‘

When you add new libraries, add them to the list like so:

LIBS=‘pkg-config --libs gsl sqlite3 apophenia‘

If you’re on a system without pkg-config, you’ll need to explicitly specify which
libraries you need:

LIBS=-lgsl -lgslcblas -lm

Every time you install a new library, you will always need to add at least one item to
theLIBS , like the -lgsl part. The GSL has a quirk that it requires a BLAS (basic
linear algebra system), and-lm is the standard math library.

Did it install? The numeric integration documentation13 has a sample program that
integrates the function specified at the top of the file. It’s agood example because I
get the impression that numeric integration is the sort of thing that I feel people often
re-implement in C (and I already have you reading the manual—there’s a lot there).
Paste it into a file and use your library-improved makefile to test and install it.

12UNIX is a trademark of AT&T; POSIX (Portable Operating System Interface (the X goes uneXplained))
is a more general descriptor for things that are UNIX-like, including Linux, BSD, Mac OS X, &c.

13http://www.gnu.org/s/gsl/manual/html_node/Numerical -integration-examples.
html

8.14. TIP 3: USE LIBRARIES (EVEN IF YOUR SYSADMIN DOESN’T WANT YOU TO)123

8.14 Tip 3: Use libraries (even if your sysadmin doesn’t
want you to)

3 October 2011

level: library user
purpose: use the Machine to rage against the Man

You may have noticed the caveats in the last entry about how you have to have
root privileges to install to the usual locations on a POSIX system. But you may not
have root access if you are using a shared computer at work, oryou have an especially
controlling significant other.

Then you have to go underground, and make your own private root directory.
The first step is to simply create the directory:

mkdir ˜/root

I already have ã/tech directory where I keep all my technical logistics, manuals,
and code snippets, so I made a˜/tech/root directory. The name doesn’t matter,
but I’ll use ˜/root below.

[Your shell replaces the tilde with the full path to your homedirectory, saving you a lot of typing. But

other programs, likemake, may or may not recognize the tilde as your home directory.]

The second step is to add the right part of your new root systemto all the relevant
paths. For programs, that’s thePATHin your .bashrc :

PATH=˜/root/bin:$PATH

By putting thebin subdirectory of your new directory before the originalPATH, it
will be searched first and your copy of any programs will be found first. Thus, you can
substitute in your preferred version of any programs that are already in the standard
shared directories of the system.

For libraries you will fold into your C programs, note the newpaths to search in the
makefile you wrote in Tip #1 and added to in Tip #2:

LIBS=-L/home/your_home/root/lib <plus the other flags, l ike -lgsl -lm ...>
CFLAGS=-I/home/your_home/root/include <plus -g -Wall -- std=gnu99...>

[Again, Appendix A ofModeling with Data goes into detail on dealing with paths and environ-

ment variables.]

The last step is to install programs in your new root. If you have the source code
and it uses autotools, all you have to do is add--prefix=˜/root in the right place:

./configure --prefix=˜/root
make
make install

You didn’t needsudo to do the install step because everything is now in territoryyou
control.

124 CHAPTER 8. TECHNIQUE

Now that you have a local root, you can use it for other systemsas well, such as
adding a subdirectory for R packages (e.g.,mkdir ˜/root/rlib) and notifying R
about them by addingR LIBS=˜/root/rlib to the˜/.Renviron file.

Because the programs and libraries are in your home directory and have no more
permissions than you do, your sysadmin can’t complain that they are an imposition on
others. If your sysadmin complains anyway, then, as sad as itmay be, it may be time
to break up.

8.15 Tip 4: Don’t bother explicitly returning anything
from main()

7 October 2011

level: Hello, world.
purpose: Eliminate a line of unnecessary code from every program

Much of the tip-a-day series will be about making your life with C more like your
life with quick-and-dirty scripting languages. Toward thegoal of having fewer lines of
code, let’s shave a line off of every program you write.

Your program must have amain function, and it has to be of return typeint , so
you must absolutely have

int main(){ ... }

in your program.
You would think that you therefore have to have areturn statement that indicates

what integer gets returned. However, the C standard knows how infrequently this is
used, and lets you not bother: “. . . reaching the} that terminates the main function
returns a value of 0.” (C standard§5.1.2.2.3) That is, if you don’t writereturn 0;
as the last line of your program, then it will be assumed.

Tip #1 showed you this version ofhello.c , and you can now see how I got away
with a main containing only one line of code:

#include <stdio.h>
int main(){ printf("Hello, world.\n"); }

A few tips from now, we’ll have cut this down to only one line.
To do:

Go through your programs and delete this line; see if it makesany difference.

8.16 Tip 5: Initialize wherever the first use may be

9 October 2011
level: still pretty basic
purpose: not think about declarations so much

8.16. TIP 5: INITIALIZE WHEREVER THE FIRST USE MAY BE 125

I see code like this pretty often:

int main(){
char * head;
int i;
double ratio, denom;

denom=7;
head = "There is a cycle to things divided by seven.";
printf("%s\n", head);
for (i=0; i< 10; i++){

ratio = i/denom;
printf("%g\n", ratio);

}
}

We have three or four lines of introductory material (I’ll let you decide how to count
the white space), followed by the routine.

This is somewhat a matter of style, but I think this looks archaic, and I’ve heard
from a few folks who learned to code via untyped scripting languages for whom the
introductory declarations are a direct and immediate turn-off. Variables still have to
have a declared type, but here’s how I’d write the code to minimize the burden:

int main(){
double denom=7;
char * head = "There is a cycle to things divided by seven.";
printf("%s\n", head);
for (int i=1; i<= 6; i++){

double ratio = i/denom;
printf("%g\n", ratio);

}
}

Here, the declarations happen as needed, so the onus of declaration reduces to
sticking a type name before the first use. If you have color syntax highlighting, then
the declarations are still easy to spot (and if you don’t havecolor, golly, get a text editor
that supports it—there are dozens to hundreds to choose from!).

Also, by the rule that you should keep the scope of a variable as small as possible,
we’re pushing the active variable count on earlier lines that much lower. When you
have a too-long function running a page or two, this can startto matter. As for the
index, it’s a disposable convenience for the loop, so it’s natural to reduce its scope to
exactly the scope of the loop.

Did you notice how I’ve been specifying-std=gnu99 in the sample makefiles
and other calls togcc ? Declaring the iterator variable for thefor loop wasn’t valid
in the mid-1990s, and GCC is still stuck in using that as the norm. It’s annoying, I
know, but that’s a minor kvetch about a program as awesome asgcc . If you’re not al-
ready compiling via an alias or a makefile, you might want to add alias gcc="gcc
-std=gnu99" to your.bashrc to get GCC to always use the 1999 standard.

126 CHAPTER 8. TECHNIQUE

8.17 Tip 6: Aggregate your includes

11 October 2011
level: casual user
purpose: stop thinking about standard header files

There was once a time when compilers took several seconds or minutes to compile
even relatively simple programs, so there was human-noticeable benefit to reducing
the work the compiler has to do. My current copies ofstdio.h andstdlib.h are
about 1,000 lines long[try wc -l /usr/include/stdlib.h] andtime.h another 400,
meaning that

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
int main(){

srandom(time(NULL));
printf("%li\n", random());

}

is actually a∼2,400-line program.
You see where this is going: your compiler doesn’t think 2,400 lines is a big deal

anymore, and this compiles in under a second. So why are we spending time picking
out just the right headers for a given program?

To do:
Write yourself a single header, let us call itallheads.h , and throw in every header
you’ve ever used, so it’ll look something like:

#include <math.h>
#include <time.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <gsl/gsl_rng.h>

I can’t tell you exactly what it’ll look like, because I don’tknow exactly what you
use day to day.

Now that you have this aggregate header, you can just throw one

#include <allheads.h>

on top of every file you write, and you’re done with thinking about headers. Sure, it
will expand to perhaps ten thousand lines of extra code, muchof it not relevant to the
program at hand. But you won’t notice.

Having junk in the name space may have conesequences from time to time. Say that
you’ve defined a function calledrndm , and at some point you forget the compressed
name and callrandom . As above,random is a real function declared instlib.h ,

8.18. TIP 7: INCLUDE HEADER FILES FROM THE COMMAND LINE 127

so you won’t get the usual warning about using an undeclared function. I don’t count
this as all that much of a problem.

When I wrote the Apophenia library, by the way, I had in mind this kind of thing,
so I have

#include <apop.h>

at the head of every program I write, whether I’ll be using anything from the Apophenia
library or not, because that includesstdio , stdlib , the stats-relevant parts of the
GSL, et cetera. And then I more-or-less never think about headers.

The next tip will show how to eliminate even that#include <allheads.h>
line at the top of all your programs.

8.18 Tip 7: Include header files from the command line

15 October 2011

level: library user
purpose: really never think about standard headers again

The GCC has a convenient flag for including headers:

gcc -include stdio.h

is equivalent to putting

#include <stdio.h>

at the head of your C file.
By adding that to our invocation of GCC, we can finally writehello.c as the one

line of code it should be:

int main(){ printf("Hello, world.\n"); }

which compiles fine via:

gcc -include stdio.h hello.c -o hi

To do:
In tip #5, you wrote a single header file to join them all, so that you could just write

#include <allheads.h>

at the top of your program. Now you don’t even need to do that: modify the
makefile from tip #1 by adding-include allheads.h on theCFLAGSline.

Discussion:
My impression is that C programmers hold themselves to a muchhigher standard of

128 CHAPTER 8. TECHNIQUE

portability than people who write code in the typical scripting language. With no stan-
dardized environment by a central authority, it takes more discipline to ensure that
everything will compile everywhere.

This tip bucks that tendency a bit, because we’re saying the program will only
compile correctly if you give just the right flag to the compiler (and this is even GCC
specific). If this bothers you, well, skip this tip.

I’m not bothered for two reasons. First, I always attach a makefile with every
program I send to anybody, because that significantly raisesthe odds that the other side
will be able to get the program running. Second, most of what Iwrite will never see
the light of day, but is written for my own research or idiosyncratic needs. For the
one-in-a-hundred stupid little C scripts for my personal use that grow into something
used by others, I might take the time to explicitly#include <apop.h> rather than
using the-include apop.h flag from this tip.

8.19 Tip 8: Use here scripts

17 October 2011
level: intermediate POSIX
purpose: fewer temp files floating around

I’ll relate this to C in a few episodes, but this is a general feature of POSIX-
compliant shells that you can use for Python, Perl, or whatever else. In fact, if you
want to have a multilingual script, this is an easy way to do it. Do some parsing in Perl,
do the math in C, then have R produce the pretty pictures, and have it all in one text
file.

Here’s a Python example. Normally, you’d tell Python to run ascript via

python your_script.py

You can give the file name’-’ to use standard in as the input file:

echo "print ’hi.’" | python ’-’

[Subtip: We need’-’ and not just - to indicate that this is plain text and not
introducing a switch like thec in python -c "print ’Hi’" . Many programs
follow a custom that two dashes indicate that they should stop reading switches and
read subsequent inputs plain. Thus
echo "print ’hi.’" | python -- -
also works, but is the sort of thing that scares people.]

You could, in theory, put some lengthy scripts on the commandline via echo , but
you’ll quickly see that there are a lot of little undesired parsings going on—you might
need\"hi\" instead of just"hi" , for example.

Thus, thehere script, which does no parsing at all. Try this:

python ’-’ <<"XXXX"
lines=2
print "\nThis script is %i lines long.\n" %(lines,)
XXXX

8.20. TIP 9: COMPILE C PROGRAMS VIA HERE SCRIPT 129

TheXXXXis any string you’d like;EOFis also popular, and----- looks good as
long as you get the dash count to match at top and bottom. When the shell sees your
chosen string alone on a line, then it will stop sending the script to the program’s stdin.
That’s all the parsing that happens.

discussion:
This tip is a standard shell feature, and so should work on anyPOSIX system. I know
because the POSIX standard14 is online and is not all that painful to read, as standards
go. Unfortunately, I’m not sure how to link to a certain line,so you’ll have to go
searching to verify my promise that Here Documents are standard shell features.

There’s also a variant that begins with<<- . Search the standard or askman bash
for details.

As another variant, there’s a difference between<<"XXXX" and<<XXXX. In the
second version the shell parses certain elements, which means you can have the shell
insert the value of$shell_variables for you.

8.20 Tip 9: Compile C programs via here script

19 October 2011
level: amused beginner
purpose: Compile via cut/paste

Today’s tip compiles C code pasted onto the command line. If you are a kinetic
learner who picked up scripting languages by cutting and pasting snippets of code into
the interpreter, you’ll be able to do the same with C and your shell.

Further, a shell is glue that does traffic control among the many programs that do
the real work. This tip will let you put C into that flow, so C code can be sandwiched
into a single file that also has plain shell instructions or steps in Perl or R.

We’re not going to use the makefile, so we need a single compilation command. To
make life less painful, let us alias it. Paste this onto your command line, or add it to
your .bashrc , .cshrc , &c.:

go_libs="-lm"
go_flags="-g -Wall -include allheads.h --std=gnu99 -O3"
alias go_c="gcc -xc ’-’ $go_libs $go_flags"

#C shell users do this a little differently:
set go_libs="-lm"
set go_flags="-g -Wall -include allheads.h --std=gnu99 -O 3"
alias go_c "gcc -xc ’-’ $go_libs $go_flags"

whereallheads.h is the aggregate header you’d put together in tip #6. Using this
-include switch means one less thing to think about when writing the C code, and
I’ve found that bash’s history gets wonky when there are#s in the C code.[The zsh is a

big winner when it comes to interactively editing historieswith long here scripts, and has no problem with

the #s.]

14http://pubs.opengroup.org/onlinepubs/009695399/

130 CHAPTER 8. TECHNIQUE

On the gcc line, you’ll recognize the’-’ to mean that instead of reading from a
named file, use stdin. The-xc flags this as C code, becauseGCC stands for GNU
Compiler Collection, not GNU C Compiler, and with no input filename ending in.c
to tip it off, we have to be clear that this is not Java, Fortran, Objective C, Ada, or C++.

Whatever you did to customize theLIBS andCFLAGSin your makefile, do here.
For example, here are my versions ofgo_libs andgo_flags , because I have pkg-
config installed and use GLib and Apophenia (and by implication, the GSL and SQLite)
for everything:

go_libs="‘pkg-config --libs glib-2.0 apophenia‘"
go_flags="-g -Wall -include apop.h --std=gnu99 -O3"

Now we can use a here document to paste short scripts onto the command line.
Not only do you not need a makefile, you don’t even need an inputfile or command
interpreter.

To do:
After defining the right aliases for your setup (including a reference to your aggregate
header), paste this onto your command line:

go_c <<"EOF"
int main(){

long int testme = 2, ct =0;
long int * primes = NULL;
while(1){

int isprime = 1;
for (long int i=0; isprime && i< sqrt(testme) && i<ct; i++)

isprime = testme % primes[i];
if (isprime){

printf("%li \r", testme); fflush(NULL);
primes = realloc(primes, sizeof(long int) * (ct+1));
primes[ct++] = testme;

}
testme ++;

}
}
EOF

./a.out #This line will wait for you to hit <ctrl>-C

Now you have a program that generates prime numbers faster than you can read
them [stop via<ctrl>-C]. You can change\r to \t or \n if you want to keep a record.
Until I got bored and stopped, it was testing about 100,000 numbers/second on my
netbook, but you can see how it does on your machine.

Managing lines of code on the command line is not fun, so don’texpect this sort of
thing to be your primary mode of working. But cutting and pasting code snippets onto
the command lineis fun, and being able to have a single step in C within a longer shell
script is pretty fabulous.

8.21. TIP 10: USEASPRINTFTO MAKE STRING HANDLING LESS PAINFUL131

8.21 Tip 10: Useasprintf to make string handling
less painful

21 October 2011
level: basic string user
purpose: don’t callmalloc

The function allocates the amount of string space you will need, and then fills the
string. That means you never really have to worry about string-allocing again.

asprintf is not part of the C standard, but it’s available on systems with the
GNU or BSD standard library, which covers pretty much everybody (including Apple
computers).

The old way made people homicidal (or suicidal, depending ontemprament) be-
cause you first have to get the length of the string you are about to fill, allocate space,
and then actually write to the space. ¡Don’t forget the extraslot in the string for the
null terminator!

This sample program demonstrates the painful way of settingup a string, for the
purpose of using C’ssystem command to run an external program. The themati-
cally appropriate program,strings , searches a binary for printable plain text. I’m
assuming that you’re compiling toa.out , in which case the program searches itself
for strings. This is perhaps amusing, which is all we can ask of demo code.

#include <stdio.h>
void get_strings(char * in){

char * cmd;
int len = strlen("strings ") + strlen(in) + 1;
cmd = malloc(len); //The C standard says sizeof(char)==1, b .t.w.
snprintf(cmd, len, "strings %s", in);
system(cmd);

}

int main(){
get_strings("a.out");

}

[Apophenia users, useapop system("strings %s", in) to bypass the need to first print to a

string and then callsystem . Everybody else, feel free to write your ownsystem with printf function;

it’s not that hard.]

With asprintf , malloc gets called for you, which means that you also don’t
need the step where you measure the length of the string:

#include <stdio.h>
void get_strings(char * in){

char * cmd;
asprintf(&cmd, "strings %s", in);
system(cmd);

132 CHAPTER 8. TECHNIQUE

}

int main(){
get_strings("a.out");

}

The actual call toasprintf looks a lot like the call tosprintf , except you
need to send the location of the string, not the string itself, because something new will
bemalloc ed into that location. Also, we don’t need to send the length parameter like
with snprintf , becauseasprintf is smart enough to count letters for you.

8.22 Tip 11: String literals

23 October 2011
level: intermediate string user
purpose: understand an annoying subtlety of C string handling

Here is a program that sets up two strings and prints them to the screen:

#include <stdio.h>
int main(){

char * s1 = "Thread";

char * s2;
asprintf(&s2, "Floss");

printf("%s\n", s1);
printf("%s\n", s2);

}

Both forms will leave a single word in the given string. However, the C compiler
treats them in a very different manner, which can trip up the unaware.

Did you try the sample code in tip #10 that showed what stringsare embedded into
the program binary? In the example here,Thread would be such an embedded string,
ands1 could thus point to a location in the executable program itself. How efficient—
you don’t need to spend run time having the system count characters or waste memory
repeating information already in the binary. I suppose in the 1970s this mattered.

Both the baked-ins1 and the allocated-on-demands2 behave identically for read-
ing purposes, but you can’t modify or frees1 . Here are some lines you could add to
the above example, and their effects:

s2[0]=’f’; //Switch Floss to lowercase.
s1[0]=’t’; //Segfault.

free(s2); //Clean up.
free(s1); //Segfault.

8.23. TIP 12: USE ASPRINTF TO EXTEND STRINGS 133

If you think of a bare string declared like"Floss" as pointing to a location in the
program itself, then it makes sense thats1 ’s contents will be absolutely read-only.

[I honestly don’t know how your compiler really handles a constant string, but it is a fine mental model

to presume it is pointing to a point in the program, so writingupon is strictly forbidden.]

Did you think this would be a series about why C is better than every other language
in every way? If so, sorry to disappoint you. The difference between constant and
variable strings is subtle and error-prone, and makes hard-coded strings useful only in
limited contexts. I can’t think of a scripting language where you would need to care
about this distinction.

But here is one simple solution:strdup , which is POSIX-standard, and is short
for string duplicate. Usage:

char * s3 = strdup("Thread");

The stringThread is still hard-coded into the program, buts3 is a copy of that
constant blob, and so can be freely modified as you wish.

8.23 Tip 12: Use asprintf to extend strings

25 October 2011
level: basic string user
purpose: malloc will be lonely, because you never call it

Here is an example of the basic form for appending another bitof text to a string
usingasprintf , which, as per tip #10, can be your workhorse for string handling:

asprintf(&q, "%s and another_clause %s", q, addme);

I (heart) this for generating queries. I would put together achain something like
this contrived example:

int row_number=3;
char * q =strdup("select ");
asprintf(&q, "%s row%i \n", q, row_number);
asprintf(&q, "%s from tab \n", q);
asprintf(&q, "%s where row%i is not null", q, i);

And in the end I have

select row3
from tab
where row3 is not null

A rather nice way of putting together a long and painful string. [I had trouble coming

up with a simple example for this one that didn’t look contrived. But when each clause of the query requires

a subfunction to write by itself, this sort of extend-the-query form starts to make a lot of sense. Apophenia

users, see alsoapop text paste .]

134 CHAPTER 8. TECHNIQUE

But it’s a memory leak, because the blob at the original address of q isn’t released
whenq is given a new location byasprintf . For one-off string generation, it’s not
even worth caring about—you can drop a few million query-length strings on the floor
before anything noticeable happens.

If you are in a situation where you might produce an unknown number of strings of
unknown length, then you will need a form like this:

//Safe asprintf macro
#define Sasprintf(write_to, ...) {\

char * tmp_string_for_extend = write_to; \
asprintf(&(write_to), __VA_ARGS__); \
free(tmp_string_for_extend); \

}

//sample usage:
int main(){

int i=3;
char * q = NULL;
Sasprintf(q, "select * from tab");
Sasprintf(q, "%s where row%i is not null", q, i);
printf("%s\n", q);

}

Discussion and caveats:
TheSasprintf macro, plus occasional use ofstrdup , is enough for roughly 100%
of your string-handling needs. Except for one glitch and theoccasionalfree , you
don’t have to think about memory issues at all.

The glitch is that if you forget to initializeq to NULLor via strdup then the first
use of theSasprintf macro will be freeing whatever junk happened to be in the
uninitialized locationq—a segfault.

As you learned in the last tip, the following also fails—wrapthat declaration in
strdup to make it work:

char * q = "select * from";
Sasprintf(q, "%s %s where row%i is not null", q, tablename, i);

8.24 Tip 13: Use a debugger

27 October 2011
level: absolutely basic
purpose: interact with your allegedly non-interactive program

Next time, I’ll run a tip about debugging technique using GDB. But today’s tip is
short and brief:

Use a debugger, always.

8.25. TIP 14: EASIER INTERROGATIONS WITH GDB VARIABLES 135

I think some of you will find this to be not much of a tip, becausewho possibly
wouldn’t use a debugger? As a person who promotes C to people who typically are
using Java or Python, I can tell you the number of people who try to write C without a
debugger are myriad.

If there’s a fault in Java or Python code, the machine throws up a backtrace im-
mediately. Our coder tries C, commits a similar error, gets the entirely unhelpful
segmentation fault. Core dumped. error, and gives up. There are more
than enough C textbooks that relegate the debugger to theother topicssegment, some-
where around Chapter 15, so it’s understandable that so manypeople don’t have the
reflex of pulling up the debugger at the first sign of trouble.

[Why Segmentation fault, exactly? Because the computer allocates a segment of memory for your

program, and you are touching memory outside that segment.]

About thatalwaysclause: there is virtually no cost to running a program underthe
debugger. I have never been able to perceive a difference in speed between running
with the debugger and running without a net (and this is the sort of thing I write tests
for when I can’t focus on real work).

The debugger isn’t just something to pull out when you reallyneed the backtrace
and variable states. It’s great being able to pause anywhere, increase the verbosity
level with a quickprint verbose++ , force out of afor (int i=0; i< 10;
i++) loop via print i = 100 andcontinue , or test a function by throwing a
series of test inputs at it. The fans of interactive languages are right that interacting
with your code improves the development process all the way along; they just never
got to the debugging chapter in the C textbook, and so never realized that all of those
interactive habits apply to C as well.

To do:
Get to know a debugger. I am a luddite, so I use GDB, but your IDEmight have one
built in. There are graphical front-ends to GDB with animal mascots; I never liked
them well enough to switch, but they may fit your tastes perfectly.

Here are some simple things to try on any program you may have with at least
one function beyondmain . They are the absolute basics in debugging technique, so if
you find that your debugging system somehow makes one of thesesteps difficult, then
dump it and find another.

• pause your program at a certain point,

• get the current value of any variables that exist in that function;

• jump to a parent function and check variable values there;

• step past the point where you paused, one line of code at a time.

8.25 Tip 14: easier interrogations with GDB variables

29 October 2011
level: intermediate debugger
purpose: name suspects

136 CHAPTER 8. TECHNIQUE

OK, after Tip 13 I hope you’re sold on the value of a debugger, and you are using
it to see your data as it gets transformed by your program.

There are graphical front-ends for the debugger, which havebuilt-in means of
showing you certain common structures. But you also no doubthave your own fa-
vorite structures, and need tailored routines for viewing those structures the way you
are used to seeing them.

This tip will cover some useful elements of GDB that will helpyou look at your
data with as little cognitive effort as possible. All of the commands to follow go on the
GDB command line. I assume you can already use GDB to do the exercise at the end
of Tip 13.

Here’s tip zero: the@ shows you a sequence of elements in an array. For example,
here are a dozen of agsl vector * ’s elements:

print * vector->data@12

Note the star at the head of the expression; without it we’d get a sequence of a
dozen pointers. Also, herein I’ll abbreviateprint to p.

Next tip, which will only be new to those of you who didn’t readthe GDB manual,
which is probably all of you. You can generate convenience variables, to save yourself
some typing. For example, if you want to inspect an element deep within a hierarchy
of structures, you can do something like

set $vd = my_model->dataset->vector->data
p * $vd@10

That first line generated the convenience variable to substitute for the obnoxious
path. Following the lead of some shells, a dollar sign indicates a variable, and useset
on first use. Unlike the shell, you need a dollar sign on theset line. The second line
demonstrates a simple use. We don’t save much typing here, but over the course of a
long interrogation of a suspect variable, this can certainly pay off.

This isn’t just a label; it’s a real variable that you can modify:

p * $vd/14 #print the pointed to item divided by 14.
p * ($vd++) #print the pointee, and step forward one

That second line uses the only piece of pointer arithmetic worth knowing: that
adding one to a pointer steps forward to tne next item in the list. [More on this in the next

few tips.]

This is especially useful because hitting the enter key without any input repeats the
last command. Since the pointer stepped forward, you’ll geta new next value every
time you hit enter, until you get the gist of the array. This isalso useful should you find
yourself dealing with a linked list. Pretend we have a function that displays an element
of the linked list; then:

show_structure $list
show_structure $list->next

8.26. TIP 15: GETGDBTO PRINT YOUR STRUCTURES 137

and leaning on the<enter> key will step through the list.[I’m not being creative here.

This is still all from the manual.]

Tip 15 will be about making that imaginary function to display a data structure a
reality.

But for now, here’s one last trick about these $ variables. Let me cut an paste a few
lines of interaction with a debugger in the other screen:

(gdb) p * out->parameters
$54 = {

vector = 0x8056380,
matrix = 0x0,
names = 0x80561c0,
text = 0x0,
textsize = {0,

0},
weights = 0x0,
more = 0x0

}

You probably don’t even look at it anymore, but notice how theoutput to the print
statement starts with$54 . Indeed, every output is assigned a variable name, which we
can use like any other:

(gdb) p * $54->vector->data
$55 = 25.0001
(gdb) p $55 * 4
$56 = 100.0004

8.26 Tip 15: getgdb to print your structures

31 October 2011
level: intermediate debugger
purpose: look at the state of your data in different ways

GDB lets you define simple macros, which are especially useful for displaying
nontrivial data structures—which is most of the work one does in a debugger. Gosh,
even a simple 2-D array hurts your eyes when it’s displayed asa long line of numbers.

The facility is pretty primitive. But you probably already wrote a C-side function
that prints any complex structures you might have to deal with, so the macro can simply
call that function with a keystroke or two. For example, I usepd to printapop data
structures via this macro:

define pd
p apop_data_show($arg0)

end
document pd

138 CHAPTER 8. TECHNIQUE

Call apop_data_show to display an apop_data set.
E.g., for a data set declared with apop_data * d, use pd d.
end

Put these macros in your.gdbinit .
Notice how the documentation follows right after the function itself; view it via

help user-defined or help pd . The macro itself just saves a few keystrokes,
but because the primary activity in the debugger is looking at data, those little things
add up.

To give a more involved example from the data structures I deal with in my work,
theapop model object has a list of settings groups—doesn’t this already sound like a
pain to inspect? So I wrote the following macro, with its accompanying documentation.
This was enough to turn debugging these settings groups frompulling teeth to, um,
cuddling puppies.

I don’t expect you to follow the details of what it does, but asa somewhat excep-
tional case, you can see how much you can do: if argument one isapop mle , then
$arg1 settings → apop mle settings , and turning the same text into a string
isn’t an awkward exception like with C’s macro processor.

define get_group
set $group = ($arg1_settings *) apop_settings_get_grp($arg0, "$arg1",
p * $group

end
document get_group
Gets a settings group from a model.
Give the model name and the name of the group, like
get_group my_model apop_mle
and I will set a gdb variable named $group that points to that m odel, which
like any other pointer. For example, print the contents with
p * $group
The contents of $group are printed to the screen as visible ou tput to this
end

I partly needed this because you can’t use preprocessor macros at the GDB prompt—
they were subbed out long before the debugger saw any of your code, so if you have a
valuable macro in your code, you may have to reimplement it inGDB. At least writing
these things is quick.

For more examples, I put a list of my favorite gdb macros15 for the GSL, SQLite,
and Apophenia elsewhere on this site.

One last unrelated GDB tip, and then we can go back to C technique next time.
Add this line to your.gdbinit to turn off those annoying notices about new threads:

set print thread-events off

15http://modelingwithdata.org/appendix_o.html\#gdbini t

8.27. TIP 16: ALL THE POINTER ARITHMETIC YOU NEED TO KNOW 139

8.27 Tip 16: All the pointer arithmetic you need to know

2 November 2011
level: basic
purpose: save you reading and cognitive effort

Here’s my theory of why I like C despite the common wisdom thatit is terrible: I
didn’t learn C in a classroom. When you learn this stuff on thestreets, you skip the
parts of the textbook that that aren’t necessary for survival, at which point you have a
pretty lean and fun language.

Kernighan & Ritchie (and by extension, lots of standard C textbooks) use a lot of
paper expressing love for how pointer arithmetic works. If you’re reading this blog,
then you need none of it.

It’s really amusing stuff. An array element consists of a base position plus an offset.
This was all designed in the 1970s, so implementing an array as a block of memory
and its elements as offsets made sense to the sort of people who spend their mornings
writing assembly code. But it was also sort of mathematically clean and appealing. You
could declare a pointerdouble * p; then that’s our base, and you can use the offsets
from that base as an array: the contents of the first element isp[0] , the contents of the
secondp[1] , et cetera. So we’ve implemented the distinction between data and the
location of data, and got arrays for free in the process.

Or you could just write the base plus offset directly and literally, via a form like
(p+1) . As your textbooks will tell you, this is valid C, and in factp[1] is exactly
equivalent to* (p+1) , which explains why the first element in an array isp[0] ==

* (p+0) . K & R spend about six pages on this stuff[sections 5.4 and 5.5].
This is a bit like how Latin is taught, versus every other language. In your Spanish

class, you start off with usage. For arrays, something like:

• Declare pointers either via the dynamic form,double * p or the static form
like double p[100] . We’ll worry about the distinction later.

• In either case, thenth array item isp[n] . Don’t forget that the first item is zero,
not one; it can be referred to with the special formp[0] == * p.

• If you need the address of thenth element (not its actual value), use the amper-
sand:&p[n] . Of course, the zeroth pointer is just&p[0] == p .

Weeks later, when you can confidently ask donde estan los aseos, your Spanish
class teaches you about the difference between different types of future tense. Mean-
while, in Latin class, youstart with learning about the ablative case, and then learn
Latin as an application of all that grammar you saw. Jumping the metaphor again, your
average C textbook opens the section on pointers with a diagram showing a series of
memory registers, while your typical Python textbook nevergets into the details of
implementation at all.

Since this is a tip-a-day blog, and you’re probably readingdon’t read the section
on pointer arithmeticas more a rant than a tip, I’ll throw in one nice trick: you don’t
need an index forfor loops that step through an array. Here, we use a spare pointer

140 CHAPTER 8. TECHNIQUE

that starts at the head of a list, and then step through the array with p++ until we hit
theNULLmarker at the end.

#include <stdio.h>

int main(){
char * list[] = {"first", "second", "third", NULL};
for (char ** p=list; * p != NULL; p++){

printf("%s\n", p[0]);
}

}

It’s nice that we don’t have to bother with a counter, as we would in any other language,
but then, it’s not much of a payoff to six pages of pointer arithmetic lessons. Exercise:
how would you implement this if you didn’t know aboutp++?

Oh, and as for bit-shifting operators, like bitwise XOR and shift-register-left, I have
written tens of thousands of lines of C code and used one maybeonce. Just skip those
sections entirely.

8.28 Tip 17: Define a string type

4 November 2011
level: still basic
purpose: slightly less confusing declarations

Here’s a line to paste into the unified header you wrote to include at the head of all
your programs back in Tip 6:

typedef char * string;

Pretty simple, but it will make your code more readable.
The sample code from last time is pretty short, so I’ll reprint the whole program.

You may find it to be hard to read (I was using it as an example of apoint I was calling
obscure), but we’ll try to fix that:

#include <stdio.h>

int main(){
char * list[] = {"first", "second", "third", NULL};
for (char ** p=list; * p != NULL; p++){

printf("%s\n", * p);
}

}

Do the declarations communicate to you thatchar * list[] is a list of strings,
and that* p is a string?

Now use typedef to replacechar * with string . There are fewer stars floating
around;p is more clearly a pointer and* p the data at the pointer:

8.29. TIP 18: DECLARE ARRAYS WHEN YOU KNOW THEIR SIZE 141

#include <stdio.h>
typedef char * string;

int main(){
string list[] = {"first", "second", "third", NULL};
for (string * p=list; * p != NULL; p++){

printf("%s\n", * p);
}

}

The declaration line forlist is now as easy as C gets, and clearly indicates that
it is a list of strings, and the snippetstring * p should indicate to you thatp is a
pointer-to-string, so* p is a string.

In the end, you’ll still have to remember that a string is a pointer-to-char ; for
example,NULL is a valid value.

I find that most folks (myself included) have no serious problem with pointers until
they get to pointers-to-pointers and further depth beyond that. With strings aschar * s,
you hit that multiple-star wall much earlier than there’s any reason to. And since t (p
??)hrough 12 already went over how to deal with strings withoutever callingmalloc ,
we might as well start using a non-pointer type name for them.

To do:
Try declaring a 2-D array of strings, using the typedef aboveplus

typedef stringlist string *

Is it easier to work out how to allocate its parts?

8.29 Tip 18: Declare arrays when you know their size

6 November 2011
level: still basic
purpose: save the memory register stuff for when you really need it

You can allocate arrays to have a length determined at run time.
I point this out because it’s easy to find texts that indicate that you either know the

size of the array at compile time or you’ve gotta usemalloc . But it’s perfectly fine
to delay initialization of the array until you find out its size. [Again, this is the difference

between C in the 1970s when this either-or choice was real, and the C of this millennium.]

For example, here’s a program (found via One Thing Well16) that will allow you
to run several programs from the command line in parallel17. The intent of the follow-
ing snippet (heavily edited by me) is to get the size of the array from the user using
atoi(argv[1]) (i.e., convert the first command-line argument to an integer), and
then having established that number at run-time, allocate an array of the right length.

16http://onethingwell.org/post/9960491695/parallelize
17http://www.marco.org/2008/05/31/parallelize-shell-u tility-to-execute-command-batches

142 CHAPTER 8. TECHNIQUE

pthread_t * threads;
int thread_count;
thread_count = atoi(argv[1]);
threads = malloc(thread_count * sizeof(pthread_t));

This is fine, and I don’t mean to disparage the author when I rewrite this, but we
can write the edited lines of code above with less fuss:

int thread_count = atoi(argv[1]);
pthread_t threads[thread_count];

There are fewer places for anything to go wrong, and it reads like declaring an
array, not initializing memory registers.

The original program didn’t bother freeing the array, because the program just exits.
But if we were in a situation where the first would need afree at the end, the variable-
length initialization still doesn’t need it; just drop it onthe floor and it’ll get cleaned up
when the program leaves the given scope.

By the way, you can find people online who will point out that manually allocated
memory is faster than automatic. I recommend not caring. Thespeed difference is a
few percent, not an order of magnitude (and is architecture-and compiler-dependent
whether there’s any difference at all). It’s a subjective thing, but in this case I’ll gladly
trade more readable code for the small speed gain, if any.

8.30 Tip 19: define persistent state variables

8 November 2011
level: intermediate
purpose: build more self-sufficient functions

Static variables can have local scope. That is, you can have variables that exist only
in one function, but when the function exits the variable retains its value. This is great
for having an internal counter or a reusable scratch space.

Let’s go with a traditional textbook example for this one: the Fibonacci sequence.
Each element is the sum of the two prior elements, and we declare the first two elements
to both be one.

#include <stdio.h>

long long int fibonacci(){
static long long int first = 1;
static long long int second = 1;
long long int out = first+second;
first=second;
second=out;
return out;

}

8.31. TIP 20: GET TO KNOW STATIC, AUTOMATIC, MANUAL MEMORY 143

int main(){
for (int i=0; i< 50; i++)

printf("%Li\n", fibonacci());
}

Check out how insignficantmain is. Thefibonacci function is a little machine
that runs itself;main just has to bump the function and it spits out another value.
My language here isn’t for cuteness: the function is a simplestate machine, and static
variables are the key trick for implementing state machinesvia C.

On to the tip: static variables are initialized when the program starts, beforemain ,
so you need to set their value to a constant.

//this fails: can’t call gsl_vector_alloc() before main() starts
static gsl_vector * scratch = gsl_vector_alloc(20);

This is an annoyance (more next time), but easily solved witha macro to start at
zero and allocate on first use:

#define Staticdef(type, var, initialization) \
static type var = 0; \
if (!(var)) var = (initialization);

//usage:
Staticdef(gsl_vector * , scratch, gsl_vector_alloc(20));

This works as long as we don’t ever expectinitialization to be zero (or in
pointer-speak,NULL). If it is, it’ll get re-initialized on the next go-round. Maybe that’s
OK anyway.

8.31 Tip 20: get to know static, automatic, manual mem-
ory

10 November 2011
level: intermediate
purpose: articulate why you hate C

C provides three models of memory management, which is two more than most
languages and two more than you really want to care about.

static data is initialized beforemain starts. Array size is fixed at startup, but values
can change (so it’s not really static).

automatic is where you declare a varaible on first use, and it is removed when it goes
out of scope. Most languages have only automatic-type data.

manual involvesmalloc and free , and is where most of your segfaults happen.
This memory model is why Jesus weeps when he has to code in C.

144 CHAPTER 8. TECHNIQUE

Here’s a little table of the differences in the three places you could put data:
static auto manual

initialized on startup •
can be scope-limited • •

set values on init • •
sizeof measures array size • •

persists across fn calls • •
can be global • •

set size at runtime • •
can be resized •

Jesus weeps •
Some of these things are features that you’re looking for in avariable, like resizing

or convenient initialization. Some of these things, like whether you get to set values
on initalization, are technical consequences of the memorysystem. So if you want a
different feature, like being able to resize in real time, suddenly you have to care about
malloc and the pointer heap.

If we could bomb it all out and start over, we wouldn’t tie together three sets of
features with three sets of technical annoyances. But here we are.

All of this is about where you put your data. Variables are another level of fun:

1. If you declared yourchar , int , ordouble variable either outside of a function
or inside a function with thestatic keyword, then it’s static; otherwise it’s
automatic.

2. If you declared a pointer, the pointer itself has a memory type as per rule number
one. But the pointer could be pointing to any of the three types of data. Static
pointer tomalloc ed data, automatic pointer to static data—all the combinations
are possible.

Rule number two means that you can’t identify the memory model by the notation.
On the one hand, it’s nice that we don’t have to deal with one notation for auto arrays
and one notation for manual arrays; on the other hand, you still often have to be aware
of which you have on hand, so you don’t get tripped up resizingan automatic array
or not freeing a manual array. This is why the statementC pointers and arrays are
identicalis about as reliable as the rule abouti before e except after c.

To do:
Check back on some code you have and go through the typology: what data is static
memory, auto, manual; what variables are auto pointers to manual memory, auto point-
ers to static values, et cetera. If you don’t have anything immediately on hand, try it
with . (p ??)

8.32 Tip 21: become a better typist

12 November 2011
level: basic computer user

8.33. TIP 22: ALL THE CASTING YOU’LL NEED 145

purpose: gain some confidence at the keyboard

This may not be the C/POSIX tip you were expecting, but let me tell you how I
taught myself to type. This is probably obvious, and I can verify from my experience
teaching people how to use these systems, but comfort with the POSIX toolchain and
comfort with the keyboard are closely (but imperfectly) correlated. It’s hard to be
comfortable on the command line if you’re not comfortable typing.

If you’re still a hunt-and-peck typist, then there are abundant tutorials out there to
show you where the home keys are, and your search engine’s recommendations are as
good or better than mine. But for me, there was a point where I technically knew how
to type but had hit my plateau. That’s where this tip came in and made me the person I
am today.

To do:
Next time you have some keyboard-oriented work to do, get a light t-shirt and drape it
over the keyboard. Stick your hands under the shirt, and start typing.

The intent is to prevent that sneaking glance that we all do tocheck where the keys
are. It turns out that the keys aren’t very mobile and are always exactly where you left
them. But those micropauses to check on things are how we keepour confidence and
facility with the keyboard at a certain safe speed. If you’reold enough to be reading
this blog, then you’ve been looking at a qwerty keyboard for years now, and don’t need
those reassuring peeks.

Not being able to see will probably be frustrating for you at first, but persist through
the initial awkwardness, and get to know those occasional keys that you never quite
learned. When you are more confident with the keyboard, you’ll have more brain
power to dedicate to writing code.

8.33 Tip 22: all the casting you’ll need

14 November 2011
level: intermediate
purpose: still less obsolete cruft in your life

There are two (2) reasons to cast a variable from one type to another.
First: when dividing two numbers, an integer divided by an integer will always

return an integer, so the following statements will be true:

4/2 == 2
3/2 == 1

That second one is the source of lots of errors. It’s easy to fix: if i is an integer, then
i + 0.0 is a floating-point number that matches the integer. Don’t forget the parentheses,
but that solves your problem:

4/(2+0.0) == 2.0
3/(2+0.0) == 1.5

146 CHAPTER 8. TECHNIQUE

You can also use the casting form:

4/(float)2 == 2.0
3/(float)2 == 1.5

I’m partial to the add-zero form, for æsthetic reasons; you’re welcome to prefer the
cast-to-float form. But make a habit of one or the other every time you reach for that/
key, because this is the source of many, many errors.[And not just in C; lots of other languages

also like to insist thatint / int → int . Not that that makes it OK.]

Second: array indices have to be integers. It’s the law (C standard§6.5.2.1), and
GCC will complain if you send a floating-point index. So, you may have to cast to an
integer, even if you know that in your situation you will always have an integer-valued
expression.

4/(float)2 == 2.0 //this is float, not an int.
mylist[4/(float)2]; //So this is an error: floating-point index

mylist[(int)(4/(float)2)]; //This works; take care with t he parens

int index=4/(float)2;//This form also works,
mylist[index]; //and is more legible.

Now that I’ve covered both of the reasons to cast in C, I can point out the reasons
to not bother. Notice that theindex variable above was an integer, but the right-hand
value was a floating-point number. C auto-casts in this case,truncating down to the
right value. If it’s valid to assign an item of one type to an item of another type, then C
will do it for you without your having to tell it to with an explicit cast; if it’s not valid,
then you’ll have to write a function to do the conversion anyway.

C++ isn’t like this: you have to explicitly cast in all cases.Fortunately, you’re
writing in C, so you can ignore C++ tutorials that tell you to explicitly cast. [And as a

broad rule that universally works for me: don’t bother with anything that usesC/C++ in the title.]

In the 1970s and 80s,malloc returned achar * pointer, and had to be cast (unless
you were allocating a string), with a form like:

//don’t bother with this sort of redundancy:
float * list = (float) malloc(list_length * sizeof(float));

You don’t have to do this anymore, becausemalloc now gives you avoid *
pointer, which the compiler will comfortably auto-cast to anything.

If you check the examples above, you’ll see that I even gave you options to avoid
the casting syntax for the two legitimate reasons to cast: adding 0.0 and declaring an
integer variable for your array indices. Bear in mind the existence of the casting form
var_type2 = (type2) var_type1 , because it might come in handy some day,
and in a few tips we’ll get to declarations that mimic this form. But for the most part,
explicit type casting is just redundancy that clutters the page.

8.34. TIP 23: THE LIMITS OFSIZEOF 147

8.34 Tip 23: the limits of sizeof

16 November 2011
level: obscure
purpose: recognize bad advice aboutsizeof

This tip is about thesizeof operator, and one difference where the statement
arrays and pointers are identical in Cis false.

I marked this entry asobscurebecause you can live a long life without using the
sizeof operator except inside allocations like

element_type * newlist = malloc(listlen * sizeof(element_type));

I even wouldn’t fault you if you wrapped it in a macro like

#define Allocate(element_type, listname, listlength) \
element_type * listname = malloc(listlength * sizeof(element_type));

and never typed the wordsizeof again. [You’d need a realloc macro too. Exercise for the

reader.]

To summarize today’s tip: the above form is a safe use ofsizeof , and not much
else is.

We start the story under the hood. The C compiler is famously ignorant of metadata,
knowing only a few facts about your data:

1. It knows the base location of your data (so you can always point to it).

2. It knows the size of one unit of your data. Recall that C relies heavily on a f (p
??)or pulling elements of arrays and structs, so it needs to know how many bytes
to step when you writebase + 3 or mystruct.third elmt .

3. For static and automatic memory, it needs to know the totalsize that has to be
automatically freed at the end of the function or at the end ofthe program.

That’s about it.
[That is as much as the system needs for its own operation, but¿why doesn’t C provide more, like a

consistent method to query the size of a block of manually allocated memory? Letting implementers of

malloc pick their favorite means of recording the block size provided the sort of freedom that delights the

system programmers, and thanks to this non-policy there area lot of different implementations ofmalloc 18.

It’s annoying, but your computer is faster for it.]

Which brings us to thesizeof operator. You might thinksizeof is just another
function, but it’s a keyword built into the compiler, because it has to have exceptional
knowledge about structure internals and is the only non-macro chance you have to
operate on a type. It is a window into item #3 in the list.

Here’s a trick that’s often thrown around19: you can get the size of an automatic or
static array by dividing its total size by the size of one element. This is usually via a
form like

18http://en.wikipedia.org/wiki/Malloc\#Implementation s
19http://c-faq.com/aryptr/arraynels.html

148 CHAPTER 8. TECHNIQUE

//This is not reliable:
#define arraysize(list) sizeof(list)/sizeof(list[0])

The denominator of the expression depends on #2 above: the system has to know
the size of one element.

The numerator really depends on #3, and is where the distinction between auto-
matic versus manually-allocated data will trip you up. Whatis the size of the data that
C will have to free when the variable goes out of scope? For an automatic array like
double list[100] , the compiler had to allocate a hundreddouble s, and will
have to free that much space at the end of scope. For manually-allocated memory, all
the system has to do at the end of the scope is destroy the pointer—freeing the data
itself is your problem. So:sizeof will probably return 200 in the case of the auto
array, and will probably return one in the case of the manual array.

Some cats, when you point to a toy, will go and inspect the toy;some cats will sniff
your finger.

Here’s some sample code, so you can see what your own system returns when
dealing with automatic and manual memory.

#include <stdio.h>

#define peval(cmd) printf(#cmd ": %g\n", cmd);

int main(){
double * liszt = (double[]){1, 2, 3};
double list[] = {1, 2, 3};
peval(sizeof(liszt)/(sizeof(double)+0.0));
peval(sizeof(list)/(sizeof(double)+0.0));

}

You’ll recognize the add-zero trick from . (p??) The initialization ofliszt may
be a form unfamiliar to you. For now, rest assured that it works in appropriate condi-
tions; I’ll get to it in a few tips, so think of it as foreshadowing.

When you run the program, you get two different values. The first variable is a
pointer, and the second an array. The size of the first is the size of one pointer (which
is appropriately half of adouble); the size of the second is threedouble s long.

The only reason the system cares about the total size of your data is for the purposes
of freeing it when leaving scope, and that’s the size you’re going to get when you use
sizeof . But that is pretty much always a different purpose than whatyou had in
mind.

[Formally, thesizeof operator isn’t really tied to the end-of-scope freeing, butit coincides so darn

well that I’m comfortable recommending it here as a functional mental model.]

This break in purposes makessizeof largely useless outside of calls tomalloc .
We’d like to write a functionmanipulate_array(double in_array[]) and
usesizeof to get the size of the input array, rather than wasting the user’s time asking
for the length. But that won’t work because the user may send either a pointer or an
array, and we won’t know which.[It can also fail for other reasons that aren’t worth gettinginto.]

8.35. TIP 24: COMPOUND LITERALS 149

8.35 Tip 24: Compound literals

18 November 2011
level: medium
purpose: create fewer one-off temp variables; lots of future uses

I know, you have no idea what the title means, but thanks for clicking through
anyway.

You can write a single element into your text easily enough—Chas no problem
understandingf(34) .

But if you want to send a list of elements as an argument to a function—a compound
literal value like{20.38, a_value, 9.8} —then there’s a syntactic caveat: you
have to put a sort of type-cast before the compound literal, or else the parser will get
confused. The list now looks like this:(double[]) {20.38, a_value, 9.8} ,
and the call looks like

f((double[]) {20.38, a_value, 9.8});

To give a full example, say that we have a functionsum that takes in an array of
double s. Then here are two ways formain to call it:

#include <math.h> //NAN
#include <stdio.h>

double sum(double in[]){
double out=0;
for (int i=0; !isnan(in[i]); i++) out += in[i];
return out;

}

int main(){
double * list = (double[]){1.1, 2.2, 3.3, NAN};
printf("sum: %g\n", sum(list));

printf("quick sum: %g\n", sum((double[]){1.1, 2.2, 3.3, N AN}));
}

The first two lines ofmain generate a single-use array namedlist and then send
it to sum; the last line does away with the incidental variable and goes straight to using
the list.

[This paragraph is arcana; you are welcome to skip it.]The first line inmain is the typical
example of an initialization via a compound literal. ¿How does it differ from

double alist[] = {0.1, 0.3, 0.5, NAN};

? This is back to the obscureness of the . (p??) For the typical array intialization,
we have an auto-allocated array and it is namedalist . The compound initializer

150 CHAPTER 8. TECHNIQUE

generates an anonymous auto-allocated array, and then we immediately point a pointer
to it. Soalist is the array, whilelist is a pointer to an anonymous array. May you
never be in a position where you have to care about this distinction.

There’s your intro to C.I.s; I’ll demonstrate many uses overthe coming weeks.
Meanwhile, ¿does the code on your hard drive use any quick throwaway lists whose
whose use could be streamlined by a compound initializer?

8.36 Tip 25: Variadic macros

20 November 2011
level: not hard
purpose: delightful tricks to follow in the coming week

I broadly consider variable-length functions in C to be broken—I have a personal
rules about the three forms I’m willing to use, which I’ll maybe expound upon later.

But variable-length macro arguments are easy. The keyword is __VA_ARGS__,
and it expands to whatever set of elements were given.

For example, here’s a fast way to implement a customized variant of printf for
reporting errors:

#define print_a_warning(...) {\
printf("Glitch detected in %s at line %s:%i: ", __FUNCTION_ _, __FILE__,
printf(__VA_ARGS__); }

//usage:
print_a_warning("x has value %g, but it should be between ze ro and one.\n",

The__FUNCTION__, __FILE__ , and__LINE__ macros get filled in with what
you’d expect.

You can probably guess how the ellipsis (...) and__VA_ARGS__work: what-
ever is between the parens gets plugged in at the__VA_ARGS__mark.

You can have arguments before the ellipsis if you want. A fullexample:

#define print_a_warning(dostop, ...) { \
printf("Glitch detected in %s at line %s:%i: ", __FUNCTION_ _, __FILE__,
printf(__VA_ARGS__); \
if (dostop==’s’) abort(); \

}

int main(int argc, char ** argv){
if (argc <= 1) print_a_warning(’s’, "argc has value %i, but i t should
if (argc > 2) print_a_warning(’c’, "argc has value %i, but it should

printf("arg one = %s\n", argv[1]);
}

8.37. TIP 26: SAFELY TERMINATED LISTS 151

8.37 Tip 26: Safely terminated lists

22 November 2011
level: follows from a (p??)nd
(p ??) purpose: operate on lists with less risk of segfaults

Compound literals and variadic macros are the cutest couple, because we can now
use macros to build lists and structures. I’ll get to the structure building a few tips from
now; let’s start with lists.

Here’s the sum function from a few episodes ago.

double sum(double in[]){
double out=0;
for (int i=0; !isnan(in[i]); i++) out += in[i];
return out;

}

When using this function, you don’t need to know the length ofthe input array, but
you do need to make sure that there’s a NaN marker at the end.[You’ll also have to check

beforehand that none of your inputs are NaNs.]Now the fun part, where we call this function
using a variadic macro:

#include <math.h> //NAN
#include <stdio.h>

#define sum(...) sum_base((double[]){__VA_ARGS__, NAN})

double sum_base(double in[]){
double out=0;
for (int i=0; !isnan(in[i]); i++) out += in[i];
return out;

}

int main(){
double two_and_two = sum(2, 2);
printf("2+2 = %g\n", two_and_two);
printf("(2+2) * 3 = %g\n", sum(two_and_two, two_and_two, two_and_two));
printf("sum(asst) = %g\n", sum(3.1415, two_and_two, 3, 8, 98.4));

}

Now that’s a stylish function. It takes in as many inputs as you have on hand, and
operates on each of them. You don’t have to pack the elements into an array beforehand,
because the macro uses a compound initializer to do it for you.

In fact, the macro version only works with loose numbers, notwith anything you’ve
already set up as an array. If you already have an array—and ifyou can guarantee the
NANat the end—then you can callsum base directly.

152 CHAPTER 8. TECHNIQUE

8.38 Tip 27: Foreach in C

24 November 2011
level: medium
purpose: borrow a useful scripting language construct

Last time, you saw that you can use acompound literalanywhere you would put
an array or structure.

For example, here is an array of strings declared via a compound literal:

char ** strings = (char * []){"Yarn", "twine"};

The compound literal is automatically allocated, meaning that you need neither
malloc nor free to bother with it. At the end of your function it just disappears.

Now let’s put that in afor loop. The first element of the loop declares the array of
strings, so we can use the line above. Then, we step through until we get to theNULL
marker at the end. For additional comprehensibility, I’lltypedef a string type, as per
. (p ??)

#include <stdio.h>

typedef char * string;

int main(){
string str = "thread";
for (string * list = (string[]){"yarn", str, "rope", NULL}; * list; list++)

printf("%s\n", * list);
}

It’s still noisy, so let’s hide all the syntactic noise in a macro. Thenmain is as
clean as can be:

#include <stdio.h>
//I’ll do it without the typedef this time.

#define foreach_string(iterator, ...)\
for (char ** iterator = (char * []){__VA_ARGS__, NULL}; * iterator; iterator++)

int main(){
char * str = "thread";
foreach_string(i, "yarn", str, "rope"){

printf("%s\n", * i);
}

}

To do:
Rewrite the macro to usevoid pointers rather than strings. If you’re the sort of person
who never tries even the easy exercises when reading tutorials then (1) I hate you, and
(2) just wait until next time, when I’ll use the solution to this as part of the next tip.

8.39. TIP 28: VECTORIZE A FUNCTION 153

8.39 Tip 28: Vectorize a function

26 November 2011
level: easy if you’ve read all the medium tips so far
purpose: make your code and math look more similar

The free function takes exactly one argument, so we often have a part at the end
of a function of the form

free(ptr1);
free(ptr2);
free(ptr3);
free(ptr4);

‘!How annoying! No self-respecing LISPer would ever allow such redundancy to
stand, but would write a macro to allow a vectorizedfree function that would allow:

free_all(ptr1, ptr2, ptr3, ptr4);

If you’ve been following along since , (p??) then the following sentence will make
complete sense to you: we can write a variadic macro that generates an array (ended by
a stopper) via compound literal, then runs afor loop over the array. Here’s the code:

#define fn_apply(fn, ...) { \
void * stopper_for_apply = (int[]){0}; \
void ** list_for_apply = (void * []){__VA_ARGS__, stopper_for_apply}; \
for (int i=0; list_for_apply[i] != stopper_for_apply; i++) fn(list_for_apply[i]);\

}

We need a stopper that we can guarantee won’t match any in-usepointers, including
anyNULLpointers, so we use the compound literal form to allocate an array holding
a single integer, and point to that. Notice how the stopping condition of thefor loop
looks at the pointers themselves, not what they are pointingto.

Usage so far:

fn_apply(free, ptr1, ptr2, ptr3, ptr4);

If we want this to really look like a function, then we can do that via one more
macro:

#define free_all(...) fn_apply(free, __VA_ARGS__);

//We can wrap this foreach around anything that takes in a poi nter.
//For GSL and Apophenia users, let’s define:
#define gsl_vector_free_all(...) fn_apply(gsl_vector_ free, __VA_ARGS__);
#define gsl_matrix_free_all...) fn_apply(gsl_matrix_f ree, __VA_ARGS__);
#define apop_data_free_all...) fn_apply(apop_data_fre e, __VA_ARGS__);

Adding it all up:

154 CHAPTER 8. TECHNIQUE

#include <stdio.h>
#define fn_apply(fn, ...) { \

void * stopper_for_apply = (int[]){0}; \
void ** list_for_apply = (void * []){__VA_ARGS__, stopper_for_apply}; \
for (int i=0; list_for_apply[i] != stopper_for_apply; i++) fn(list_for_apply[i]);\

}

#define free_all(...) fn_apply(free, __VA_ARGS__);

int main(){
double * x= malloc(10);
double * y= malloc(100);
double * z= malloc(1000);

free_all(x, y, z);
}

If the input isn’t a pointer but is some other type (int , float , &c), then you’ll
need a new macro. Implementing this (either for one new type or taking a type as an
argument to the macro) is left as an exercise for the reader. Ishowed you a version with
strings in the . (p??) Also, if you want compile-time warnings about type errors,then
you can rewrite the function here to usegsl vector * pointers,gsl matrix *
pointers, . . . , instead of justvoid * pointers.

You could rewrite this to return a value for each input item, but at this point we
might be stretching what we want a macro to do. If you’re a fan of the Apophenia
library, it has theapop mapfunction (and friends) to do this sort of thing with vectors
and matrices.

8.40 Tip 29: Preprocessor tricks!

28 November 2011
level: getting advanced
purpose: turn code into more code

The token reserved for the preprocessor is the octothorpe, #, and the preprocessor
makes three (3) entirely different uses of it.

You know that a preprocessor directive like#define begins with a # at the head
of the line. Whitespace is ignored, so here’s your first tip: you can put throwaway
macros in the middle of a function, just before they get used,and indent them to flow
with the function. According to the Old School, putting the macro right where it gets
used is against the Correct organization of a program (whichputs all macros at the head
of the file), but having it right there makes it easy to refer toand makes the throwaway
nature of the macro evident.

Next use of the #: in a macro, it turns input code into a string.Here’s the code from
, (p ??) slightly rewritten:

8.40. TIP 29: PREPROCESSOR TRICKS! 155

#include <stdio.h>

int main(){
#define peval(cmd) printf(#cmd ": %g\n", cmd);
double * liszt = (double[]){1, 2, 3};
double list[] = {1, 2, 3};
peval(sizeof(liszt)/(sizeof(double)+0.0));
peval(sizeof(list)/(sizeof(double)+0.0));

}

When you try it, you’ll see that the input to the macro is printed as plain text,
because#cmd is equivalent tocmd as a string.

Sopeval(list[0]) would expand to

printf("list[0]" ": %g\n", list[0]);

Does that look malformed to you, with the two strings"list[0]" ": %g\n" next
to each other? Next preprocessor trick: if two literal strings are adjacent, the prepro-
cessor merges them into one:"list[0]: %g\n" . And this isn’t just in macros:

printf("You can use the preprocessor’s string "
"concatenation to break long lines of text "
"in your program. I think this is easier than "
"using backslashes, but be careful with spacing.");

Conversely, you may want to join together two things that arenot strings. Here,
use two octothorpes, which I will herein dub the hexadecathorpe : ##. If the input is
LL , then when you seename ## _list , read it asLL_list , which is a valid and
useful variable name.

Gee, you comment,I sure wish every array had an auxiliary variable that gave its
length.OK, let’s write a macro that declares a local variable endingin _len for each
list you tell it to care about. We’ll even make sure every listhas a terminating marker,
so you don’t even need the length.

That is, this macro is total overkill, but does demonstrate how you can generate lots
of little temp variables that follow a naming pattern that you choose.

#include <stdio.h>
#include <math.h> //NAN

#define Setup_list(name, ...) \
double * name ## _list = (double []){__VA_ARGS__, NAN}; \
int name ## _len = 0; \
for (name ## _len =0; !isnan(name ## _list[name ## _len]); \

name ## _len ++) / * do nothing. * /;

int main(){

156 CHAPTER 8. TECHNIQUE

Setup_list(items, 1, 2, 4, 8);
// Now we can use items_len and items_list:
double sum=0;
for (double * ptr= items_list; !isnan(* ptr); ptr++)

sum += * ptr;
printf("total for items list: %g\n", sum);

// Some systems let you query an array for its
// own length using a form like this:
#define Length(in) in ## _len

sum=0;
Setup_list(next_set, -1, 2.2, 4.8, 0.1);
for (int i=0; i < Length(next_set); i++)

sum += next_set_list[i];
printf("total for next set list: %g\n", sum);

}

Discussion:
The macro above really is pretty bad form, and tries to hard for the sake of demonstrat-
ing multiple new variables. But there are some in the Old School who eye all macros
warily. C is built uponexpressions, which evaluate to produce other expressions, and
can be plugged in wherever. That’s why you can write things like if (x = (y==f(z))...
and it all makes sense (or at least, compiles correctly). Themacros above don’t pro-
duce expressions, but are blocks of code that generate new variables and do all sorts of
math along the way.

Macros are a pain to debug and can do tricky things, so here’s my subjective style
tip: lean toward macros that aren’t expressions, and which can’t be used in the middle
of a stream of math even if you wanted to. When something breaks, you’ll need to hunt
through the macro to find the error; it’s a pain, but at least you have the block of code
the macro produces isolated.

8.41 Tip 30: Use Apophenia to read in data and config-
uration info

30 November 2011
level: Basic for anybody dealing with data
purpose: Use libraries!

This is a special case of a (p??)bout using pre-existing libraries wherever possible.
After all, C’s big edge is that it’s been around for forty years; that’s a lot of time for
useful libraries to get written.

Reading in text is an especially difficult problem that everybdoy has to deal with

8.42. TIP 31: USE THE DATABASE FOR CONFIGURATION INFO 157

so it is especially library-appropriate. Despite my self-conscious desire to not self-
promote, I’m gonna tell you that Apophenia does a decent job with this.

First, let’s generate a data set. I’ll wrap it up as a here document, as per , (p??) so
you can just paste this onto the command line:

cat > text_data << "."
left|middle|right
2|5| 12
3|8|9
3|8|Galia est omnis divisa en partes tres
.

The sample data shows the first tip for the day: use pipes as field delimiters. Pipes
really look like the bounds between fields, and they rarely appear in the data you’re
putting into a text file. The default for so many systems is commas or tabs, both of
which are just asking for glitches.

Reading a data set to a matrix is pretty trivial via Apophenia. In this example, I’ll
stretch it out by first reading into the database (instead of directly usingapop_text_to_data ,
which would save two lines of code but lose the non-numeric input). [And remember a (p

??)bout compiling C code via here document? It’s how I test all the sample code I put here, and is still an

easy way for you to try it all out.]

#include <apop.h>

int main(){
sprintf(apop_opts.input_delimiters,"|");
apop_text_to_db("text_data", "datatab");
apop_data * indata = apop_query_to_data("select "

"left, middle from datatab");
Apop_col(indata, 0, firstrow);
Apop_col(indata, 1, secondrow);
printf("first column sum: %Lg\n", apop_sum(firstrow));
printf("second column sum: %Lg\n", apop_sum(secondrow)) ;

}

If you installed the Apophenia library, then you also have the command-lineapop_text_to_db ,
which just runs the C function in the second line ofmain .

8.42 Tip 31: Use the database for configuration info

2 December 2011
level: writing programs with lots of options
purpose: avoid writing yet another config system

An easy text-to-database conduit isn’t just for data sets. Your project may also
need an extensive set of configuration details. Simulationsare especially prone to this:

158 CHAPTER 8. TECHNIQUE

how many periods should run, how many agents should we start with, what percent of
agents will be type 1, et cetera. These can all be expressed asplain text.

You could thus write a text file where each line is a key, followed by a colon,
followed by the key’s value. Read in the text file usingapop_text_to_db with the
delimiter set to: , and you now have a key/value database with all of your configuration
info.

Let’s re-do the Fibnoacci example from . (p??) First, a config file, here-document-
ified for your cutting and pasting convenience:

cat > fib_config << "."

title: The Fibonacci sequence
how many: 20

#In my example, I started the sequence with 1, 1, but the
#Fib. sequence formally starts with 0, 1.
first: 0
second: 1

#Or uncomment these to try Lucas numbers, which start with:
#first: 2
#second: 1
#title: The Lucas sequence

#The setup below will use only the first instance of any given key.
.

Our keys can have spaces (and basically any other odd characters that make the
names human-friendly), because they’re text to be read intothe database, not variable
names. Apophenia follows the shell convention that #s indicate comment lines.

Now for the program that uses the config file. The big change from the version in
Tip #19 (where this code was used to introduce static variables for state machines) is
theGet_float_key macro used throughout, and thatmain starts by reading in the
database and setting defaults. If you recall the , (p??) the macros should be easy to
read.

#include <apop.h>

#define Get_float_key(k) \
apop_query_to_float("select value from config where key= ’" #k "’")

//Get_text_key leaks. New School Tip: the leak is too small t o be worth caring
#define Get_text_key(k) \

apop_query_to_text("select value from config where key=’ " #k "’")->text[0][0]

#define Check_key(k, default) \
if (!apop_query_to_float("select count(*) from config where key=’" #k

8.43. TIP 32: GET TO KNOW YOUR SHELL 159

apop_query("insert into config values (’" #k "’, ’" #defaul t "’)");

#define Staticdef(type, var, initialization) \
static type var = 0; \
if (!(var)) var = initialization

long long int fibonacci(){
Staticdef(long long int, first, Get_float_key(first));
Staticdef(long long int, second, Get_float_key(second)) ;
long long int out = first+second;
first=second;
second=out;
return out;

}

int main(){
sprintf(apop_opts.input_delimiters,":");
apop_text_to_db("fib_config", "config", .field_names = (char * []){"key", "value"});
Check_key(title, Fibbo sequence);
Check_key(first, 0);
Check_key(second, 1);
Check_key(how many, 10);

printf("%s\n", Get_text_key(title));
int max=Get_float_key(how many);
for (int i=0; i< max; i++)

printf("%Li\n", fibonacci());
}

Great, now you can endlessly tweak your program’s parameters without recompil-
ing. If you have to keep a dozen different variant runs organized, you can write a single
script that precedes each run of your program with a new configfile generated via here
document.

There are lots of other ways to read in config data; have a look at Modeling with
Datapp 203–210 for several. But here’s the short version: if you’re usingfscanf or
getchar , there are higher-level tools that will do the work for you.

8.43 Tip 32: Get to know your shell

4 December 2011
level: basic command-line habitant
purpose: use the conveniences available to you

My favorite lines from this video about UNIX20:

20http://www.youtube.com/watch?v=JoVQTPbD6UY

160 CHAPTER 8. TECHNIQUE

“We are trying to make computing as simple as possible.”
“. . . we wanted. . . not just a good programming environment. .. but a system around
which a community could form—a fellowship.”
“The UNIX operating system is basically made up of three parts: the kernel . . . the
shell. . . the various utility programs, which perform specific tasks like editing a file or
sorting a bunch of numbers or making a plot.”

The first two are just something to make you gohmm, but the third is a real state-
ment of policy: the shell that you just use tocd andls around before pulling up your
editor was intended to really be a core part of how you do work on a UNIX box. As
such, the shell does a lot more than just walk around the filesystem and start programs.

A POSIX-standard shell will have

1. an interactive front-end—the command prompt—which may include lots of user-
friendly tricks,

2. a system for recording and re-using everything you typed—history,

3. abundant macro options, in which your text is replaced with new text—i.e., an
expansionsyntax, and

4. a Turing-complete programming language.

There isa lot of shell scripting syntax, but the next four tips will cover afew pieces
of low-hanging syntactic fruit for the above four categories. There are many shells to
be had (and my last tip will be that you try a different one fromthe one you’re using
now), but most of these tips are are POSIX-standard, and so work in any shell.

bang star I’ll start with item #2 from the list: history. If you don’t want to reach
all the way over to the up arrow,!! will repeat the prior command.[This ! stuff isn’t

POSIX-standard, but seems pretty standard across shells.]I find this useful when I’m editing the
source code forgoprogram.c in one window and running it in another. Here’s what
I usually wind up typing in that run window’s command prompt to compile and run the
program over and over:

make; ./goprogram
!!
!!
!!
!!

Now divide the command line into the first item (the command),and everything
else (the command arguments). You can paste the command arguments into the current
line with ! * . To make a directory and then step into it without retyping:

mkdir /home/b/tech/code_snippets/try_this
cd ! *

If you don’t have an edit window/run window setup, then you can alternate between
editing a Python script and running it with:

8.44. TIP 33: REPLACE SHELL COMMANDS WITH THEIR OUTPUTS 161

vi a_script_that_I_am_writing.py
python ! *
vi ! *
python ! *

where you can replacevi with the editor of your choice. If you are usingvi
itself, then you can of course run an executable script without leaving the editor via the
:!. % command.vi is wonderful like that.

[In many shells,!p re-runs the last command that started with ap (and!pyth pulls up the last com-

mand that started withpyth, but why do extra typing). In which case you could turn the above sequence into

vi script , thenpython ! * , !v , !p , !v , !p . But use this form sparingly and don’t just fish through

your history, because!r might pull up anrm * you forgot about.]

fc This is a command for turning your noodling on the shell into arepeatable script.
Try

fc -l #the l is for ‘list’ and is important

You now have on the screen a numbered list of your last few commands. Your shell
may let you typehistory to get the same effect.

You can write history items 100 through 200 to a file viafc -l 100 200 > a_script .
Cut out the line numbers[or usefc -n -l to not print them to begin with], remove all your
experiments that didn’t work, and you’ve converted your futzing on the command line
into a clean shell script.

In most shells[not POSIX-standard, but if it works, use it], you can run the shell script
via source a_script , or the convenient shorthand. a_script , which trades
comprehensibility for brevity.

If you omit the-l flag, thenfc becomes a much more immediate and volatile tool.
It pulls up an editor immediately (which means if you redirect with > you’re basically
hung), doesn’t display line numbers, and when you quit your editor, whatever is in that
file gets executed immediately. This is great for a quick repetition of the last few lines,
but can be disastrous if you’re not careful. If you realize that you forgot the-l or
are otherwise surprised to see yourself in the editor, delete everything on the screen to
prevent unintended lines from getting executed.

But to end on a positive note,fc stands forfix command, and that is its simplest
usage. With no options it edits the prior line only, so it’s nice for when you need to
make more elaborate corrections to a command than just a typo.

8.44 Tip 33: Replace shell commands with their out-
puts

6 December 2011
level: you want something more than pipes
purpose: use outputs as inputs to the next step

162 CHAPTER 8. TECHNIQUE

, (p ??) I gave you a four-item list of things your shell can do. Number three was
expansions: replacing certain blobs of text with other text.

Variables are a simple expansion. If you set a variable like

onething="another thing"

on the command line [C shell users:set onething="another thing"], then
when you later type

echo $onething

thenanother thing will print to screeen.
Shell variables are a convenience for you to use while working at the command

prompt or throwing together a quick script. They are stupendously easy to confuse
with environment variables, which are sent to new processes and read via a simple
set of C functions. Have a look at Appendix A ofModeling with Datafor details on
turning shell variables into environment variables.

Also, your shell will require that there be no spaces on either side of the=, which
will annoy you at some point.[This rule is for the purposes of supporting a feature that ismostly

useful for makefiles.]But there you have it: our easiest and most basic substitution of one
thing for another.

[Isn’t it conveniently nifty that the $ is so heavily used in the shell, and yet is entirely absent from C

code, so that it’s easy to write shell scripts that act on C code (like in) (p??), and C code to produce shell

scripts? It’s as if the UNIX shell and C were written by the same people to work together.]

For our next expansion, how about the backtick, which on a typical keyboard shares
a key with thẽ and is not the more vertical-looking single tick’ . [The vertical tick indi-

cates that you don’t want expansions done:echo ’$onething’ will actually print $onething .] The
backtick replaces the command you give with the output from the command, doing so
macro-style, where the command text is replaced in place with the output text. Here’s
an example in which we count lines of C code by how many lines have a; ,) , or } on
them; given that lines of source code is a lousy metric for most purposes anyway, this
is as good a means as any, and has the bonus of being one line of shell code:

#count lines with a), }, or ;, and let that count be named Lines .
Lines=‘grep ’[)};]’ * .c | wc -l‘

#count how many lines there are in a directory listing; name i t Files.
Files=‘ls * .c |wc -l‘

echo files=$Files and lines=$Lines

#Arithmetic expansion is a double-paren.
#In bash, the remainder is truncated; more on this later.

echo lines/file = $(($Lines/$Files))

#Or, use those variables in a here script.
#By setting scale=3, answers are printed to 3 decimal places .

8.45. TIP 34: USE THE SHELL’S FOR LOOPS TO OPERATE ON A SET OF FILES163

bc << ---
scale=3
$Lines/$Files

OK, so now you’ve met variable substitution, command substitution, and in the
sample code I touched on arithmetic substitution for quick desk calculator math. That’s
what I deem to be the low-hanging fruit; I leave you to read themanual on alias expan-
sion, history expansion, brace expansion, tilde expansion, parameter expansion, word
splitting, pathname expansion, glob expansion, and the difference between" " and’
’ .

8.45 Tip 34: Use the shell’s for loops to operate on a set
of files

8 December 2011
level: you use the shell enough to be frustrated by it
purpose: do the same thing to a bunch of files

Continuing on with the discussion of getting more from the shell (begun in) (p??),
let’s get to some proper programming, with if statements andfor loops.

But here’s your first tip about programming using your shell’s language: don’t do
it. The shell is Turing complete, and has variables and functions that look like those in
any other language, but it’s especially easy to write unmaintainable code in the shell.
Scope is awkward—pretty much everything is global. It’s a macro language, so all
those things that they warned you about when you write two lines of C preprocessor
code are relevant for every line of your shell script. There are little tricks that will eas-
ily catch you, like how you can’t have spaces around the= in onething=another ,
but you must have spaces around the[and] in if [-e ff] (because they aren’t
characters—they’re kewords that just happen to not have anyhuman-language charac-
ters in them). Write shell scripts to automate what you wouldtype at the command
line, and if you need to go further take the time to switch to Perl, Python, &c.

for loops My vote for greatest bang for the buck from having a programming lan-
guage that you can type directly onto the command line goes torunning the same
command on several files. Here, let’s back up every.c file the old fashioned way, by
copying it to a new file with a name ending in.bkup :

for file in * .c;
do

cp $file ${file}.bkup;
done

You see where the semicolon is: at the end of the list of files the loop will use,
on the same line as thefor statement. I’m pointing this out because I find it to be
hopelessly counterintuitive, especially when we cram thisonto one line:

164 CHAPTER 8. TECHNIQUE

for file in * .c; do cp $file ${file}.bkup; done

It somehow bothers me that thedo is right there with the command, but there you
have it.

For your scientific computing needs, thefor loop is useful for dealing with a
sequence ofN runs. By way of a simple example, let’s search our C code for digits,
and write each line that has a given number to a file:

for i in 0 1 2 3 4 5 6 7 8 9; do grep $i * .c > lines_with_${i}; done
wc -l lines_with * #a v. rough histogram of your digit usage.

Testing against Benford’s law is left as an exercise for the reader.
The curly braces in${i} are there to distinguish what is the variable name and

what is subsequent text; you don’t need it here, but you wouldto make a file name like
${i}lines .

You may have theseq command installed on your machine—it’s BSD standard
but not POSIX standard. Then we can use backticks to generatea sequence:

for i in ‘seq 0 9‘; do grep $i * .c > lines_with_${i}; done

Running your simulation a thousand times is now trivial:

for i in ‘seq 1 1000‘; do ./run_sim > ${i}.out; done

#or append all output to a single file:
for i in ‘seq 1 1000‘; do echo run $i >> sim_out; ./run_sim >> si m_out; done

8.46 Tip 35: Use the shell to test for files

10 December 2011
level: you want some automation out of your shell
purpose: look before you leap

, (p ??) I discussed how the shell can be used as a Turing-complete programming
language (and advised you to not use it as such). For example,you could automate
the sort of thing you’d type at a command line, like setting upa sequence of runs of a
program.

Now let’s say that your program relies on a data set that has tobe read in from a
text file to a database. You only want to do the read-in once; inpseudocode: if database
exists do nothing, else generate database from text.

On the command line, you would usetest , a versatile command typically built
into the shell. Run a quickls , get a file name you know is there, and usetest like
this:

test -e a_file_i_know
echo $?

8.46. TIP 35: USE THE SHELL TO TEST FOR FILES 165

By itself test outputs nothing, but since you’re a C programmer, you know that every
program has amain function that returns an integer, and we will use only that return
value here. Custom is to read the return value as a problem number, so 0=no problem,
and in this case 1=file does not exist.[Which is why, as per , (p??) the default is thatmain returns

zero.] The shell doesn’t print the return value to the screen, but stores it in a variable,
$? , which you can print viaecho .

OK, now let us use it in anif statement to act only if a file does not exist. As in C,
! meansnot.

if test ! -e a_test_file; then
echo test file had not existed
touch a_test_file

else
echo test file existed
rm a_test_file

fi

Notice that, as with thefor loops from last time, the semicolon is in what I con-
sider an awkward position, and we have the super-cute rule that we endif blocks with
fi . To make it easier for you to run this repeatedly using!! , let’s cram it onto one
margin-busting line. The keywords[and] are equivalent totest , so when you see
this form in other people’s scripts and want to know what’s going on, the answer is in
man test .

if [! -e a_test_file]; then echo test file had not existed; to uch a_test_file; else

The multi-line version would make a fine header for the scriptfrom last time: start
with someif statements to check that everything is in place, then run afor loop to
run your program a few thousand times.

The condition is considered to be true when the evaluated expression is zero (=no
problem), and false when it is nonzero (=problem). So outside of thetest command
you can think of the typical if statement asif the program ran OK, then. . ., which
makes it perfect for error checking:

#generate some test files
mkdir a_test_dir
echo testing ... testing > a_test_dir/tt

#Remove the test files iff they were archived right
if tar cz a_test_dir > archived.tgz; then

echo Compression went OK. Removing directory.
rm -r a_test_dir

else
echo Compression failed. Doing nothing.

fi

[If you want to see this fail after running once, trychmod 000 archived.tgz to make the desti-

nation archive unwriteable, then re-run.]

166 CHAPTER 8. TECHNIQUE

8.47 Tip 36: Try a new shell

12 December 2011
level: command-line habitant
purpose: get comfortable in your shell

I t (p ??)his set of shell tips with a list I made up: the shell provides(1) facilities for
interactive comfort, (2) history, (3) a ton of macro-like expansions, and (4) program-
ming standards likefor loops andif statements. I then gave you tips for parts (2),
(3), and (4).

Here’s my tip for item (1): try a new shell. There is no particular reason for the
interactive features to stick to any one standard, because it is by definition not the
programmable and scriptable part of things, so some shells provide much more user
comfort than others. If some shell wants to have an animated paperclip in the corner
kibbitzing your work, who’re they hurting?

The shell you’re using now is probably bash, the Bourne-again shell, so named
because it’s a variant of Stephen Bourne’s shell for the original UNIX. It is part of
the GNU project, and so has very wide distribution. But wide distribution means that
it can’t be too experimental with new features and comforts,because it has to run
everywhere, and for every stupid quirk somebody has writtena really importantshell
script that depends upon that quirk. I have my own complaints: GNU tools tend to
provide half-hearted support for thevi keymap (which I have very much internalized),
and the manual page is amazing for having absolutely no examples.

If you are on a Mac with software a couple of years old, then youmay be on a
version of the C shell. The C shell is really not an acceptableshell anymore, and you
will especially reap benefits from dropping it.

Notably, there’s tab completion. In bash, if you type part ofa file name and hit
<tab> , the name will be autocompleted if there’s only one option, and if not, hit
<tab> again to see a list options. If you want to know how many commands you can
type on the command line, hit<tab><tab> on a blank line and bash will give you
the whole list.

There are two types of shell users: those who didn’t know about this tab-completion
thing, and people who use itall the time on every single line. Now and then I wind up
on a machine (like an old Mac) that somehow doesn’t have tab completion, and I can
only go about fifteen minutes trying to work with it before winding up in the fœtal
position.

But shells beyond bash go further. When you typels -<tab> in the Z shell, it
will check the help pages and tell you what command line switches are available, and
when you type make <tab> it will read your makefile and tell you the possible tar-
gets. The Friendly Interactive shell (fish) will check the manual pages for the summary
lines, so when you typeman l<tab> it will give you a one-line summary of every
command beginning with L, which may save you the trouble of actually pulling up any
man page at all.

Here are a few zsh tips, that give you a hint as to what switching from bash can get
you. There are lots of other shells out there; I’m writing about zsh because it’s the one

8.47. TIP 36: TRY A NEW SHELL 167

I know best[and it gets the vi keymap right].
You can find many pages of Z shell tips21, or maybe check out this 14-page Zsh

reference card22 [PDF]. So there goes parsimony—but why bother being Spartanwith
interactive conveniences.[If you have Spartan æsthetics, then you still want to switchout of bash; try

ash .] Much of the documentation is taken up by options you can add toyour .zshrc
(or just type onto the command line); here are the two you’ll need for the examples
below:

setopt INTERACTIVE_COMMENTS
#now commends like this won’t give an error
setopt EXTENDED_GLOB
#for the paren-based globbing below.

Expansion of globs, like replacingfile. * with file.c file.o file.h is
the responsibility of the shell. The most useful way in whichZsh expands this is that
** / tells the shell to recurse the directory tree when doing the expansion. A POSIX-
standard shell reads˜ to be your home directory, so if you want every.c file anywhere
in your purview, try

ls ˜/ ** / * .c

Remember last time how we backed up our.c files? Let’s do that with every last
one of ‘em:

for ff in ˜/ ** / * .c; do cp $ff ${ff}.bkup; done

#What backups do we have now?
#you may need "ls --color=no"
ls ˜/ ** / * .c.bkup > list_of_backups

The Z shell also allows post-glob modifiers, sols * (.) lists only plain files and
ls * (/) lists only directories. This gets Byzantine, so tryls * (<tab> to get the
full list of options before typing in that last) .

Oh, and remember from h (p??)ow bash only gives you arithmetic expansion on
integers, so$((3/2)) is always one? Zsh and Ksh (and I dunno which others) are
C-like in giving you a real (more than integer) answer if you cast the numerator or
denominator to float:

#works for zsh, syntax error for bash:
echo $((3/2))
echo $((3/2.))

#repeating the line-count example from Tip 33:
Files=‘ls * .c |wc -l‘
Lines=‘grep ’[)};]’ * .c | wc -l‘

#Cast to floating point by adding 0.0
echo lines/file = $(($Lines/($Files+0.0)))

21http://grml.org/zsh/zsh-lovers.html
22http://www.bash2zsh.com/zsh_refcard/refcard.pdf

168 CHAPTER 8. TECHNIQUE

Now the shell-as-desk calculator is usable again.
Spaces in file names can break things in bash, because spaces separate list elements:

echo t1 > "test_file_1"
echo t2 > "test file 2"

#This fails in bash, is OK in Zsh
for f in test * ; do cat $f; done

The Z shell has array variables (which you can define using parens) that don’t rely
on spaces as delimiters, so the above isn’t a problem:

#Having made the files above, run this in zsh:
for f in test * ; do cat $f; done

#equivalent to:
files=(test *)
for f in $files ; do cat $f; done

OK, enough about the Z shell, which is the one that is currently working well for
me. There are many more to be had, and the odds are good that there’s a shell that will
work better for you than the one that shipped with your box. Wikipedia23 has a shell
comparison chart. Perl fans, maybe try the Perl shell24.

If you decide to switch, there are two ways to do it: you can usechsh to make
the change official in the login system [/etc/passwd gets modified], or if that’s
somehow a problem, you can addexec -l /usr/bin/zsh (or whatever shell you
like) as the last line of your.bashrc , so bash will replace itself with your preferred
shell every time it starts.

8.48 Tip 37: Rename things with pointers

14 December 2011
level: just far enough to be confused by pointers
purpose: distinguish between aliasing and memory management issues

OK, where were we? At the outset, I went over some of the o (p??)f y (p ??)our
C programs, in case you’re used to having an interpreter doing all your dirty work. I
went over the subset you need to make strings tolerable (Tips, (p ??) , (p ??) , (p ??)
and) (p??). I showed you some tricks with , (p??) with , (p ??) and how far you
can get . (p??) Underlying that was that you could do so while avoiding the dreaded
malloc and all the associated memory management. I covered ((p??)there’s a fourth
type to come). I haven’t even mentioned structs yet, though my number one favorite
tip is about them. That’ll come next.

23http://en.wikipedia.org/wiki/Comparison_of_computer _shells
24http://www.focusresearch.com/gregor/sw/psh/

8.48. TIP 37: RENAME THINGS WITH POINTERS 169

But for now, let me pick up on that thread of segregatingmalloc and memory
management issues to their proper place.

When I tell my computersetA to B, I could mean one of two things:

1. Copy the value ofB into A. When I doA++, thenB doesn’t change.

2. LetA be an alias forB. When I doA++, thenB also gets incremented.

The first conceptual tip is in no way C specific: every time yourcode sayssetA to
B, you need to know whether you are making a copy or an alias.

For C, you are always making a copy, but if you are copying the address of the
data you care about, a copy of the pointer is a new alias for thedata. That’s a fine
implementation of aliasing. It doesn’t get awkward until you start aliasing the the
location of the data, which is the start down the chain of aliasing aliases.

Other languages have different customs: LISP family languages lean heavily on
aliasing and haveset commands to copy; Python generally copies scalars but aliases
lists (unless you usecopy or deepcopy). Again, knowing which to expect will clear
up a whole lot of bugs all at once.

[By the way, you’ll now and then meet a language that does not provide any mechanism at all for one

of aliasing or copying. I hate to be negative, but such languages are braindead. Do not use them for serious

work. I don’t care if the language is well-funded and there are conferences about it; this is an absolutely

basic requirement.]

We often wind up with structures within structures within structures. Let me use
Apophenia as an example, and allocate anapop_data set via

apop_data * adata = apop_data_alloc(1,1);

This is anapop_data set that has one element, which you may sometimes need;
e.g., model parameters have to be of typeapop_data , so if your model has one
parameter, this is what you’ve gotta have. But this declaration wraps agsl_matrix .
If you’re mostly working with the matrix, then name it:

apop_data * adata = apop_data_alloc(1,1);
gsl_matrix * matt = adata->matrix;

//Now matrix operations are clearer:
gsl_matrix * inv = apop_matrix inverse(matt);

[Inverting a 1-D matrix may seem like overkill, but in a larger routine, it sure beats writing a bunch of

special cases that depend on the size of the input matrix.]

In fact, the matrix is really just an array ofdouble s, so the one element in that
1× 1 matrix may also merit an alias:

apop_data * adata = apop_data_alloc(1,1);
double * thedata = adata->matrix->data;

//Use this like any other scalar:

* thedata = 1.2;

170 CHAPTER 8. TECHNIQUE

Getting slices of matrices and vectors also work by generating aliases for the data.
So you’ve got a lot of ways of looking at your data, depending on whatever is

conveninent and has meaning for you. The alias makes clear tohuman readers what
your focus is and how you are thinking about the data.

And writing thedata sure is more readable than puttingadata->matrix->data
everywhere.

Oh, look: we’ve gotten through another tip on pointers without mentioningmalloc —
and that’s really the point of this tip. The concept of manually-allocated memory and
the concept of an alias are distinct, and you can readily use aliases without manual
allocation.

If you manually allocate a block, you’re going to feel prettystupid if you don’t
have a means of referring to it, so you can’t have manual allocation without a pointer
aliasing the location. That’s why the old school textbooks introduce pointers and man-
ual memory management at the same time. But so what—point to whatever you want
whenever you want to make something more readable.

To do:
I gave you that advice above that every time you have a line that sayssetA to B, you
need to know whether you are asking for an alias or a copy. Grabsome code you have
on hand (in whatever language) and go through line by line andask yourself which is
which. Were there cases where you could sensibly replace a copying with an alias?

8.49 Tip 38: Use Valgrind to check for errors

16 December 2011
level: once you’re used to the debugger
purpose: find allegedly impossible-to-find bugs

Fail fast. If something goes wrong, then you want the program to start banging pots
and pans the moment it happens.

Here’s how I usually start my little lecture to people about debugging technique:
you need to find the first point in the program where something looks wrong.Good
code and a good system will find that point for you.

C gets mixed scores on this. The compiler runs loads of consistency checks, and
thus finds many errors before they even occur. If you are dyslexic or otherwise commit
frequent spelling errors, a language that requires declared variables is essential; an
implicit-declaration language will take a typo likeconut=15 and generate a new
variable that has nothing to do with thecount you meant to set.

On the other hand, C will let you allocate to the tenth elementof a nine-element
array, and then trundle along for a long time before you find out that there’s garbage
in element ten.[Some scripting languages will just auto-reallocate the array to accommodate your error,

which is an enthusiastic failure to fail fast.]

Those memory mismanagement issues are a hassle, and so thereare tools to con-
front them. Within these, Valgrind is a big winner. Get a copyvia your package
manager.

8.50. TIP 39: KNOW THE CONSTRAINTS OF C STRUCTS 171

Valgrind runs a sort of virtual machine that keeps better tabs of what is allocated
where than the real machine does, so it knows when you hit the tenth element in an
array of nine items.

Once you have a program compiled (with debugging symbols included via GCC’s
-g flag, of course), run

valgrind your_program

If you have an error, Valgrind will give you two backtraces that look a lot like
the backtraces your debugger gives you. The first is where themisuse was first de-
tected, and the second is Valgrind’s best guess as to where the memory you meant to
write to would have been allocated. The errors are often subtle, but having the ex-
act line to focus on goes a long way toward finding the bug. Valgrind is under active
development—programmers like nothing better than writingprogramming tools—so
I’m amused at how much more informative the reports have gotten over time, and only
expect better in the future.

You can also start the debugger at the first error, by running via

valgrind --db-attach=yes your_program

With this sort of startup, you’ll get a line asking if you wantto run the debugger on
every detected error, and then you can check the value of the implicated variables as
usual. At which point we’re back to having a program that fails on the first line where
a problem is detected.

Valgrind also does memory leaks, via

valgrind --leak-check=full your_program

This is slower, so you might not want to run it every time, but maybe it won’t make any
noticeable difference for your situation. At the end, you’ll have a backtrace for every
leak.

I take any memory leak under maybe 100KB as ignorable noise (unless I expect
that the code could someday be re-run in the center of a loop).We’re not working on
computers with 64kb of memory, so don’t stress about every line.

8.50 Tip 39: Know the constraints of C structs

18 December 2011
level: beginner in C, versed in other languages
purpose: add elements to your structures

Adding elements to your structures is, it turns out, a reallyhard problem, with an
abundance of different solutions, none of which are all thatpleasing. This entry isn’t
too much of a direct tip, to tell you the truth, but is about themeans of thinking about
all this.

We’ll start with the problem statement, which is a restatment of the t (p??)hat C
really likes to think in base-plus-offset terms. If you havean array of ints declared

172 CHAPTER 8. TECHNIQUE

via int * aa , then that’s a specific location in memory, and you refer toint[3] ,
that is a specific location in memory3 * sizeof(int) past the point whereaa
is. Structured data works the same: if I declare a type and an instance of that type like
this:

typedef struct {
char * name;
void * value;

} list_element_t;

list_element_t * LL;

then I know thatLL is a point in memory, andLL->value is a point in memory
just far enough past that to get past the name, i.e.sizeof(char *) further down
from LL .

In terms of processing speed, this base-plus-offset setup is as fast as it gets, but
it more-or-less requires knowing the offsets at compile-time. If you come in later in
the game and somehow redefinelist_element_t as not having that firstname
element, then the whole system breaks down. You could perhaps imagine extending
the structure to have more elements after the fact, but now all your arrays of stucts are
broken. Your structure is fixed at compile time, at which point the various offsets are
measured and your source code converted to express offsets (LL + sizeof(int))
instead of the names we recognize (LL->value).

Pro: we get lots of compile-time checks, and what is probablythe fastest way
possible to get to your data. Con: the structrue is fixed at compile time.

There are many ways to get around the fixed structures.

C++, Java, &c Develop a syntax for producing a new type that is an instance of the
type you want to extend, but which inherits the old type’s elements. Pros: you can
still get base-plus-offset speed, and compile-time checking; once the child structure is
set up, you can use it as you would the parent. Cons: so much paperwork, so many
added keywords to support the structure (where C hasstruct and its , (p??) Java
hasimplements , extends , final , instanceof , class , this , interface ,
private , public , protected).

Perl, Python, &c A structure in any of these languages is really a list of named
elements—thestruct above would be a fine prototype for a rudimentary implemen-
tation. When you need an item, the system would traverse the list, searching for the
item name the programmer gave. Pros: fully extensible by just adding a new named
item. Cons: ¿when you refer to a name not in the list, is it a typo or are you adding
a new element?; you can improve the name search via various tricks, but you’re a
long ways from the speed of a single base-plus-offset step; you’ll need more C++-like
syntax go guarantee that a list-as-structure has certain elements.

8.50. TIP 39: KNOW THE CONSTRAINTS OF C STRUCTS 173

C All the machinery you have in C for extending a structure is towrap it in another
structure. Say that the above type is already packaged and can not be changed, but
we’d like to add a type marker. Then we’ll need a new structure:

typedef struct {
list_element_t elmt;
int typemarker;

} list_element_w_type_t;

Pros: this is so stupid easy, and you still get the speed bonus. Cons: Now, every
time you want to refer to the name of the element, you needyour_typed_list->elmt->name
instead of what you’d get via a C++/Java-like extension:your_typed_list->name .
Add a few layers to this and it starts to get annoying. You still don’t get to add to the
list during run-time; the only way to do this is via a list likethe one the struct here
describes.

If you come from one of the other traditions, don’t expect theC struct to do what
a list or hash does in Ruby or Perl—but you can get such a structvia the Glib library.
Instead, revel in the simplicity of building structures using other structures as elements.
Several of the tips to follow will help you with using nested structures without annoy-
ance. You already saw how c (p??)an help here.

BIBLIOGRAPHY

Nicholas A Christakis and James H Fowler. The spread of obesity in a large social
network over 32 years.N Engl J Med, 357(4):370–379, 2007.

Cohen-Cole E and J M Fletcher. Is obesity contagious? socialnetworks vs. environ-
mental factors in the obesity epidemic.Journal of Health Economics, 27(5):1382–7,
September 2008.

Rachel Karniol. A conceptual analysis of immanent justice responses in children.Child
Development, 51(1):118–130, 1980.

Jan Kmenta.Elements of Econometrics. Macmillan Publishing Company,2nd edition,
1986.

Caroline Mansfield, Suellen Hopfer, and Theresa M Marteau. Termination rates after
prenatal diagnosis of Down syndrome, spina bifida, anencephaly, and Turner and
Klinefelter syndromes: A systematic literature review.Prenatal diagnosis, 19(9):
808–812.

Donald A Norman.The Design of Everyday Things. Basic Books, 1988.

Judea Perl.Causality. Cambridge University Press, March 2000.

174

