
Overloaded with operator overloading

Ben Klemens

29 April 2009

Last time I discussed some pleasant uses of integer division, but I think most of us
really think of it as an annoyance. We don’t expect all the decimals to be truncated. If
I type in 3/2, I expect 1.5, darn it, not 1.

Indeed, this is an annoying gotcha to C and other integer-arithmetic languages,
and more broadly, it shows us the dangers of operator overloading. O.o. is when an
operator, like /, does something different depending on the types involved. For two
integer types, the slash does the divide-and-truncate operation, and for anything else it
does the usual division.

Oh, you can do pointer arithmetic, wherein you add a pointer and an integer. This
too can lead to confusion: given int x=3, if you should mistakenly ask for &x+3,
you don’t get a compilation error, and the system just steps forward three steps as
requested (which may or may not segfault).

Other languages actually encourage o.o., and give you tools to create a different
meaning for / for any given pair of types. Well, you just saw the tradeoff: we can do
things and create meaning for something that had been incoherent (like a pointer plus
an integer), but if our expectations are wrong, then we have that much less keeping us
from doing the wrong thing.

Human language is very redundant, which is a good thing. Redundancy is a good
thing because it allows error-checking. When Nina Simone says ne me quitte pas, it’s
OK if you space out at the beginning, because . . . me quitte pas has the pas to indicate
negation. It’s OK if you space out at the end, because ne me quitte . . . has the ne to
indicate negation.

Programming languages don’t do this. We express negation exactly once, typically
with only one character (!), and don’t worry about things like case and gender. So if
you space out in the first half of writing a line of code, there’s nothing to call you on
errors.

I’m not talking about sex enough on this blog, so here are some words for genitalia.
The Spanish for penis is pene, masculine; the feminine equivalent vagina, is gramati-
cally feminine. But as you can imagine, there are vulgar forms for when these terms
sound too medicinal: the masculine pene becomes polla (f), and the girl-parts become
the masculine (and very vulgar) coño (m). I could think of no better demonstration of
how little gender in grammar has to do with actual gender. Instead, just think of them
as noun classes.

So it’s not about boys versus girls, but about redundancy, and giving the listener a
few more clues about what the person across the room is trying to get across.

1

Programming languages do have genders, except they’re called types. Generally,
your verbs and your nouns need to agree in type (as in Russian, Amharic, Arabic,
Hebrew, among other languages). That means redundancy, and perhaps a different
verb form for the same action when executed on different types. With this redun-
dancy, you’d need matrix multiply(a, b) when you have two matrices, and
complex multiply(a, b) when you have two complex numbers (however ex-
pressed).

With operator overloading, of course, you don’t need any of that. Express matrix
multiplication as a * b and complex multiplication as a * b. This is much more
brief, but you’ve lost redundancy.

I’ve said it above, but let me say it again: redundancy is a good thing. It’d be
hard to confuse a complex scalar with a real matrix, but it’s darn common to confuse a
pointer-to-int and an int, or take a one-dimensional matrix to be a vector. As you add
types, it only gets worse, and some systems will give you a list, vector, and unordered
list to confuse, and the power to multiply together any two of them with a * b.

From here on to more complex types, there are a lot of subtleties involved. SQL,
the language for manipulating database tables, is based on an algebra, meaning that
there is an operation that maps to addition, an operation that maps to multiplication,
a distributive property, et cetera. What if SQL were expressed as such, so you would
write joins as t1 * t2 instead of the verbose select ... where t1.x =
t2.x form we do use? Things would be a lot more brief, but not necessarily any easier
to read, write, or understand, because the * operator doesn’t give you any information
about what a product means in this context on these types. You just have to have the
documentation open or have memorized the rules. The typical form for the rule is
something like, ‘It’s sort of like multiplying scalars, but for the following additional
rules and caveats. . . .’

So, once more, redundancy is good, because the metaphor between the product in
the real scalar context and the product in the context of the new type is probably only
partially correct.

So there’s the tradeoff: you’ve saved space on the page, and didn’t have to type
much of anything, but have lost all redundant hints that b is actually a list and not the
vector you thought it was.

From here, the final decision is entirely subjective. I am a klutz and often commit
the sort of errors I describe above, so I benefit heavily from a redundant language. You
may be working primarily with only a few types that are hard to confuse, in which case
all of my warnings are not an issue, and you only benefit from the brevity. But from
the frequency of kvetching about how int / int behaves differently from float
/ float, it seems a lot of people lean toward preferring redundancy.

This is the only real example of o.o. I can think of in C. The * gets reused as binary
multiplication and unary pointer-dereference, but those are very different actions and
there’s never confusion.

2

