Intuition versus ease of use

Ben Klemens

15 May 2009

[Part three of six]

A book entitled Design of Everyday Things, by Donald A Norman [Norman, |1988]
very clearly had an influence on the design of many of Microsoft’s products. It in turn
was influenced by what was trendy at the time (1988): the original Macintosh features
prominently, there is a whole page on the promise of hypertext, and he complains about
EMACS. In his section on Two Modes of Computer Usage, he explains that there’s a
third-person mode wherein you give commands to the computer, and then the computer
executes them; and there’s a first-person mode where you do things your own darn self,
like telling the computer to multiply matrix A by matrix B versus entering numbers
into the cells of a spreadsheet. At the ideal, you can’t tell that you’re using a computer;
the intermediary dissolves away and it just feels like working on a problem. Of course,
some tasks are too hard for first-person execution, as Mr. Norman explains: “I find that
I often need first-person systems for which there is a backup intermediary, ready to take
over when asked, available for advice when needed.” This paragraph, I posit without a
shred of proof, is the genesis of Clippy the Office Assistant.

Although Mr. Norman points out that we feel more human and less like computer
users when we are in first-person mode, it is often a terribly inefficient way to work. A
word-processor document is not like handwriting a letter, so pretending it is is some-
times folly. For example, you don’t hard-code numbers: instead of writing Chapter 3,
you’d write Chapter \ref{more_rambling} (I5[gX form; Word has a similar thing), and
let the computer work out what number goes with the more_rambling reference

In the context above, first-person mode matches literal markup. Don’t write a note
to the computer that it should find all titles and boldface them; instead, go and boldface
them all the way you would if you had a highlighter and paper in hand. Third-person
commands are inhuman, unintuitive, and how we get computers to make our lives easier
and more efficient.

Forcing the user DOET has much to say about saving the user from him, her, or
itself. Make it impossible to make errors, he advises designers. His shining example
of good design are car doors that can only be locked from the outside using the key.
There’s a trade-off of some inconvenience, but it is absolutely impossible to lock the

'T used the LaTeX markup for Chapter \ref{more_rambling} here because it saves me the trouble of
having to explain the seven-step process it takes to do the same thing in Word. And by the way, if you
change the referred-to chapter’s title, all of the references will break and you’ll have to repeat the seven-step
process for each reference.



car keys inside. Word clearly fails on this one: you want to hard-code your references?
Feel free; in fact, we’ll make it hard for you to do otherwise, since doing otherwise
doesn’t follow the metaphor of simply writing on paper.

More generally, a good design has restrictions: if you can only put your hand in
one place on the door’s surface, then that’s where you’ll put your hand, and the door
will open on the first try. What about IZTEX? It gives you a blank page. You can type a
basically infinite range of possibilities. This is where DOET leaves the command line:
it isn’t restrictive enough to guide the user, and therefore is a bad design.

I think he’s got the interpretation entirely wrong: there is only one thing that you
can do with the blank slate that you get in EMACS, IATgX, or a command line: read
the manual (RTFM). Just as your car won’t let you lock yourself out, you can’t write a
crappy document in ITEX until you’ve gotten a copy of the manual and at least had half
a chance to expose yourself to the correct way to do things. Mr. Norman again: “Alas,
even the best manuals cannot be counted on; many users do not read them. Obviously
it is wrong to expect to operate complex devices without instruction of some sort, but
the designers of complex devices have to deal with human nature as it is.” True, people
won’t read manuals unless you force them to. So force them to.

Ease of initial use The benefit of the intuitive interface is that you don’t have to read
the manual You can jump in and go. Aunt Myrtle only writes one letter a month, so
making her spend an hour reading the introduction manual—which she will entirely
forget by next month—is inefficient and bad design.

But ease of initial use is only important for those items that we only use once or
occasionally. Think of the things you use every day: your preferred means of transport
may be an automobile, a bicycle, or your shoelaces. You spend all day typing with a
QWERTY keyboard. Perhaps you play a musical instrument. The fact that you are
reading this indicates that you are literate. None of these things are intuitive. You
spent time (in some cases, years) learning how to do them, and now that you did, you
enjoy driving, riding, playing, and reading without thinking about the time you spent
practicing.

Simply put, not having to read the manual is massively overrated. If a person is
going to use a device for several hours every day for the next year or even the next
decade, then for them to spend an hour, and maybe even weeks, learning to use the
device efficiently makes complete sense. More on this important point later.

Metaphor shear Another problem is what Neal Stephenson calls metaphor shear.
That’s when you’re happily working with a mental model in the back of your mind,
and one day your metaphor breaks. Back to DOET: “Three different aspects of mental
models must be distinguished: the design model, the user’s model, and the system im-
age [...]. The design model is the conceptualization that the designer had in mind. The
user’s model is what the user develops to explain the operation of the system. Ideally,
the user’s model and the design model are equivalent. However, the user and designer

2By the way, I rarely find intuitive interfaces to actually be intuitive. They’re designed around certain
target users whom I'm evidently incapable of thinking like. More generally, the concept of having an intuitive
interface assumes that the intuition of everybody on Earth is exactly the same.



communicate only through the system itself: its physical appearance, its operation,
the way it responds, and the manuals and instructions that accompany it. Thus, the
system image is critical; the designer must ensure that everything about the product is
consistent with and exemplifies the operation of the proper conceptual model.”

This is where DOET overestimates computing. It’s a book that’s mostly about
doors and faucets and other everyday objects. He’s right that if you have to RTFM
to work a door (even if the manual just says Push), the door’s design is broken. He’s
right that for complex systems, like panels of airline instruments, they should not work
against intuition (e.g., if two levers do different things, they should look different). But
he combines them into a false conclusion: complex systems should work with intuition
so well that you shouldn’t have to read the manual.

First, this is absurd in any setting but desktop computers. Would you feel OK if
your pilot told you the plane was so intuitive that she didn’t bother learning how to use
it before the flight?

But back to the main point, making a word processor which is so intuitive to the
user that he or she doesn’t have to RTFM is a much more complex task than making a
manual-less faucet. If we needed to build a faucet such that it runs if the user presses it
with his hand, bangs it with a pot, or bumps it with his elbow, that would be easy—put
a button on the top. But to program a picture of a faucet such that the user can click on
the thing, or double-click on the thing, or type R and all make the picture of a faucet run
requires programming a call to the Run method for three separate events. If the user
comes up with something that the programmer didn’t think of, like holding down the
alt key and clicking on the picture, then the user’s metaphor shears. What your momma
told you is true: it’s easier to just present the truth than to weave a whole world around
aliell

Mr. Norman'’s call for simple interfaces (he doesn’t really say anything about meta-
phors to physical objects, but he does talk about simple mental models, and for most of
us that means physical metaphors) therefore leads us down a supremely difficult path:
first, the program designer must lie to the user by presenting a metaphor that is easy
for the user to immediately guess at. Then, the designer must now design the program
so that anything the user does, no matter how unpredictable, will cause the program to
behave in the correct metaphorical manner. This is a very high bar, to the point that a
program as complex as Word simply can not achieve it.

Feature creep Mr. Norman is right that we shouldn’t have to RTFM for simple, ev-
eryday tasks. Writing a letter or one-page paper is so common that his principle that it
should be manual-less should probably apply. Further, we have the technology. How-
ever, as I've learned ever-so-painfully, writing a book is an order of magnitude more
technically difficult. Programs like Word and Scientific Word imply that writing a let-
ter and a book are are identical, just a matter of extent, when in the end they aren’t:
one has a valid paper metaphor attached, which programmers can easily implement,

3For those down with the lingo: every event has to have a method for every object, which is dozens of
events times dozens of objects equals hundreds of things that could go wrong with the metaphor—assuming
you got good rules about passing the right events to the right objects to begin with. Inheritance doesn’t help
because most of the time the inherited methods don’t quite work as they should, leaving you with objects
which almost fit the metaphor.



and one does not. A good word processor, then, would let you do basic things without
effort, and then put its foot down at some point. You get all the tools you need to write a
business letter, and then if you want more, you’ll need to get a new tool with a manual.
Clearly, nobody is ever going to write a program like this. To some extent, this is a
good thing, since it pushes technology forward, but at the expense of annoying users
who have to sit through half-appropriate metaphors badly implemented. Mr. Norman
writes about creeping featurism as an evil which pervades all of design, and he’s right:
nobody ever says “I’'m done.’ﬂ

One good way to implement this would be a simple graphical front end to the basic
features of a less metaphor-laden back-end program. When you’ve sapped the offerings
of the graphical front end, you’ll have a bearing when you RTFM on the less intuitive
stuff. This is how a host of Unixy programs work, but the front ends also eventually
succumb to featurism. Scientific Word takes it to the extreme, by trying to give you
a button for every last feature and refusing to admit that it is a front-end—perhaps
because it is an expensive front-end to free software.

Since no programmer will ever have the discipline to admit that their manual-less
tool will work only for a limited range of tasks, the discipline falls upon the user to
realize that it’s OK to use simplifying metaphors for simple situations, but complex
tasks require tools that don’t lie to you.

Word is carefully built from the ground up to be intuitive, not to be efficient—and it
lies to you every step of the way to give the impression that the system actually works
the way you intuitively guess it does. The next section describes how even the smallest
intuitive but inefficient detail can add up to immense time costs in a system you use all
day, every day.

References

Donald A Norman. The Design of Everyday Things. Basic Books, 1988.

4There is a stand-out exception to this: TgX was done in 1988, after nobody claimed the author’s cash
prize for finding bugs, and the code base has not changed since then. The add-on, IATEX, was cemented in
1994. Authors who want to change something in the system must add a package to the base systems.



