Multiple imputation’s setting

Ben Klemens

24 October 2010

This is really part II of the last entry #036. M.IL. or one of its friends is really
essential for honest analysis. If you have missing data, you have some model for filling
it in, and it’s better to measure the variability added by the missing data model than to
just ignore it and pretend the values you filled in are correct with certainty.

So, then, ;why aren’t these techniques absolutely everywhere missing data is found?
People in some fields, like your survey jockeys, are entirely familiar with this problem,
and would never fill in a value without properly specifying that model. Other fields and
the systems that support them expect you to reinvent the tools as needed.

There’s a multiple imputation function for Apophenia, which basically does the
last step or two of the multiple imputation process for you: given a series of fill-ins,
find the statistic for each, and apply the within/across variance formula. It was a bear
to write, and not because the math is all that hard. In fact, Apophenia is built from
the ground up around the use of models in the sort of plug-in format, so if there’s any
stats system out there where writing a function to find a statistic using a parent model
crossed with a fill-in model, it’d be this one. But look at how much has to be specified:
parent model, possibly one model for each column of missing data, a statistic that uses
all of those models at once, and the base data in a format that the first three items know
how to work with. All of these—especially the aggregation of several models for each
variable into a unified missing-data story—have to be specified and tested by the user
before calling the multi-impute function.

As above, Apophenia has a standardized model object that can be sent to func-
tions and thrown around internally without much fuss; to the best of my knowledge,
it is currently unique in that respect, so other systems need to come up with a fussier
means of specifying how the multi-impute function is to make its draws and aggregate
everything together.

There’s an R package named mi which solves the problem by requiring the user to
use specific set of models, based on a Bayesian framework preferred by some of the
pioneering works in multiple imputation, and as per the last episode, the combination
of models can easily make use of Bayesian model-combining techniques. To use the
package, you pick from a short list of named models, and away you go.

Quick—if you start with a Dirichlet prior with parameters [a, a2] and a Multi-
nomial likelihood function [f1, 2], what will the posterior look like? OK, time’s up:
it’s a Dirichlet distribution with parameters [a; + (1, ag + (2]. So using this specific
form dodges a computational bullet, so it’s the sort of thing that is the focus of the mi
package. I'm being a little unfair with this example, because the package allows much



more flexibility than just this simplest of model combinations, but it’s also a far cry
from accepting any type of input model crossed with any type of fill-in model. R is
Turing Complete, so you can do it, but expect to start from near zero and brush up on
your S4 object syntax.

By which I mean to say that crossing one model against another is basically the
limit of what we can organize with the tools we have today, which is a little sad.

Presentation But let’s say that you’re one of those people who assumes away the
problem of organizing two models (one of which is a compound model for several
variables) plus a statistic-calculating function plus a data set as just trivial and to be
assumed away; then you still have (1) the problem of having users understand that
these are the inputs they are to provide. Remember that most users got an education in
a traditional statistics course that taught a series of plug-and-play finalized techniques
and procedures. If all you know is OLS, then estimating an aggregate of OLS and
missing data generation process is mindblowing.

Then, (2), there’s the output problem. There are a number of possible outputs: most
verbose would be to (A) actually report the several imputations for every data point, or
you could (B) report the variance of each imputed value, or you could (C) report the
larger variance of the final statistic and not bother with the internal workings.

Option (A) is the most voluminous data, and has been advocated by a decent num-
ber of people, especially for the case where there are separate people on the data-
gathering side and the data-analysis. The gathering side could give ten filled-in data
sets to the analysis side, and leave the analyst side to calculate the statistic of its choos-
ing and trust that it will apply the simple total across/within variance equation correctly.

Option (B) is a middle-ground that gets difficult. We want to know how well the
imputed values are fitting in, especially when the imputations are more complex than
a simple multivariate Normal. This is where good data visualization comes in. We’ve
had literature on the problem of presenting too many data points for decades now, and
we have established means of coping. But in this case, the data is both voluminous
and complex: each point has a span around it, and data may or may not be missing on
different dimensions, meaning that that different confidence blobs may have different
dimension. This is something we’re still working on.

The mi package focuses on this, providing a heap of plots of the imputations for
use in diagnosing problems. The authors do a fine job of giving good views of what is
fundamentally too much information, but it’s still a lot to digest, and would be hard to
throw into a journal article with only a few sentences of explanation.

Option (C) is certainly the easiest to the consumer, because everything has finally
been summarized to a single variance, and the reader doesn’t have to care about whether
the main cause was within-imputation or across-imputation variance (though that’d be
easy enough to report as well). Now your only problem is to explain to readers that
your variance is larger than the next guy’s because you took into account problems that
the other guy didn’t.

The problems for all of these options at these various levels of aggregation are real
but surmountable. In each case, the problem is in education: the end-user, whether
an analyst or a package user or a reader, needs to understand that we’re combining a



parent model with a data generation model, what a good or bad data generation model
will look like, and how to fit this combination model into a world where most models
are just a single surface model. That is, multiple imputation is also at the edge of what
a typical statistics education can accommodate.



