
Structs versus dictionaries

Ben Klemens

25 March 2011

This continues the entry #038 giving a simplified (but sufficient) view of compound
types across all languages. Every language has lots of cute tricks, but if you know what
sort of means your language has of representing lists of numerically indexed elements,
and how it deals with lists of named elements, then you can fake yourself a pretty long
way along.

In the last episode, I equatedstructs and dictionaries, which may seem odd to
those of you who have used both. Their intent tends to be different, as revealed by their
names:structs are for structured collections of data, while dictionaries are for long
lists of named elements.

[The internal workings are certainly different, but the point of this post is that this paragraph on internals

is a digression which you can skip. Astruct is a variant of an array, in that it’s a sequence of items at some

spot in memory; the only difference is that the position has aname instead of a number, and the distance

from one item to the next, in terms of transistors on the memory chip, isn’t constant. A dictionary or hash

is a higher-level structure, maybe a linked list or something like what I sketch out below, which somehow

associates a name (a text string) with each item. Comparing two strings is computationally expensive, so the

strings are typically munged into a more easily compared number—a hash. So thestruct is a variant of

the array that allows variable-length elements and names inyour source code; the dictionary is a high-level

data structure that happens to use strings as labels.]

All those differences aside, they do share much in common. You’ll notice, for
example, that none of the languages in the list from last timehave both a fixedstruct
and a dictionary built in to the language: if there’s a dictionary or hash, then that serves
as the vehicle by which complex types get constructed. In theother direction, though,
you can’t use astruct to generate an especially long list of named elements, like a
bona fidedictionary of English words and their definitions.

Or to put this another way:
array struct dictionary

many homogeneous elements yes no yes
some heterogeneous elements don’t yes yes

I explained thedon’t entry last time: your language may allow a numerically in-
dexed array to hold a long list of heterogeneous elements, but this is lousy form; more
below. Theno entry is becausestruct declarations can only be so long here in
practical reality.

At this point, some of the fans of the newer languages declarevictory—the dictio-
nary does more than thestruct. But this is using only what is built in to the grammar
of the language.

1

A dictionary is an easy structure to generate given what we have in the static-struct
languages. Here’s some C code; for consistency with the awk example from last time,
you can cut and paste it onto your command line.

echo ’
#include <stdio.h>

typedef struct {
char *key;
void *value;

} keyval;

int main(){
int zero = 0;
float one = 1.0;
char two[] = "two";

keyval dictionary[] = {{.key="zeroth", .value=&zero},
{.key="first", .value=&one},
{.key="second", .value=&two}};

printf("keyval %s: %i\n", dictionary[0].key,

(int)dictionary[0].value);
printf("keyval %s: %g\n", dictionary[1].key,

(float)dictionary[1].value);
printf("keyval %s: %s\n", dictionary[2].key,

(char*)dictionary[2].value);
}
’ | gcc -xc ’-’; ./a.out

Once you write afind key function, this can work as a full-blown dictionary.
[The thing about knowing the types on output can also be worked around via creative
macros, but for most applications you don’t need to.] Writing this function is left as
an exercise to the reader, but it’s just an instructional exercise, because fleshing this
out and making it bulletproof has already been done by other authors; see the GLib’s
keyed data tables orGHashTable, for example. The point here is simply that having
compound structs plus simple arrays equals a short hop to a dictionary. If you are
coming from a dictionary-heavy idiom to the C family, then you’ll have to split your
dictionary uses intostruct-like short lists and long lists, and use a structure out of
GLib (or Boost, or whatever is appropriate) for the long homogeneous lists with a name
index.

OK, so we’ve seen (last time) how Awk uses named lists to fake numbered lists.
We put named lists into numbered arrays to generate key-value lists. What if we have
only simple numbered arrays?

FORTRAN 77 (which is not Fortran 90 or later versions) lacks the ability to declare
complex types. This is true of many of the punched card languages first developed in

2

the ‘60s and 70s. If you want a structure listing dimensions one through three, pop-
ulation count, and workspace size, then declare an integer array of size 5 and just
remember thativ[1] throughiv[3] are the dimensions,iv[4] represents popula-
tion, iv[5] represents workspace size, and so on. This is what I’d above referred to
as bad form, and the language all but forces you to do it. And now that you have your
array of integers, set up another arrayfv for the floating-point values.[Exercise: given

only numerically-indexed arrays of homogeneous types, howwould you set up a key/value structure? If you

wind up with four or five arrays, is there any way to bind them into one parent structure, so you don’t have

to send all those arrays to every function that uses the structure? [answer: no, not in F77.]]If you want a
linked list where item 4 points to item 2 which points to item 6, then declare an array
of integers and write 2 in location 4 and 6 in location 2, and perhaps -1 in location 4 to
indicate the start of the list. If that sentence confused you, try writing (or debugging) a
whole program in that style.

Here’s an actual code snippet, a function call cut and pastedfrom archives of FOR-
TRAN routines (I ran it throughf2c; the R project uses this in the orignal FORTRAN):
ehg131(xx, yy, ww, &trl, diagl, &iv[20], &iv[29], &iv[3], &iv[2],
&iv[5], &iv[17], &iv[4], &iv[6], &iv[14], &iv[19], &wv[1] ,
&iv[iv[7]], &iv[iv[8]], &iv[iv[9]], &iv[iv[10]], &iv[iv[22]],
& iv[iv[27]], &wv[iv[11]], &iv[iv[23]], &wv[iv[13]], &wv[iv[12]],
& wv[iv[15]], &wv[iv[16]], &wv[iv[18]], &i 1, &wv[3], &wv[iv[26]],
&wv[iv[24]], &wv[4], &iv[30], &iv[33], &iv[32], &iv[41], &iv[iv[25]]
&wv[iv[34]], &setlf);

I could explain whativ[1] throughiv[41] stand for, but it wouldn’t help. This
is as write-only as code gets.

I’ve made some effort to translate some such code to C, and it’s something I really
regret. The problem with code like this is not that it’s in a now-unpopular language,
but that it’s in a language that doesn’t support named, heterogeneous data structures.

There’s more: objects (structs/dictionaries with functions in them), variants like
Python’s tuples, sets, bags, and everything else you learned about in your data struc-
tures textbook. But if you’re a tourist to a new language and have to get things done
fast, the above will be a good start. In an episode or two I’ll really expand this point.

3

