
Typesetting code listings

Ben Klemens

18 April 2011

Chris Lasher, who is currently readingModeling with Data, wrote to ask me a
difficult and delicate question:

[. . . ] Is there a particular reason why the code listings in the book are
in a proportional font, rather than a monospace font? I find myself sur-
prised and frustrated reading the code samples because they’re rendered in
proportional fonts. It seems even more perplexing given itsinconsistency
with code snippets, filenames, etc. in-lined with the book’sprose, which
are typeset in a monospace font.

Since I haven’t seen a really thorough discussion of the question, and every book
with code has to face up to it, I’ll give you everything I’ve got on the question. There
are considerations that advocate for both sides. Just as Chris was frustrated by the
variable-width typesetting, some people who looked at the early monospaced drafts
made comments about how it was monospace that looked terrible to their eyes.

If you’re about totoo long; didn’t read this essay, here’s the short version: good
code reads like prose, and a variable-width font fits that aim.

• Code should be an essay. The idea ofliterate programming is common enough
now that lines about how code should be written for humans first and computers second
is kinda cliché, and I wonder if I still need to cite Donald Knuth as a proponent of
literate programming or if it’s just common wisdom at this point.

Treating code as literature definitely advises that code should be in the same type
as any other text. The voice in my head does read code differently when code is in a
variable-width font, reading long function names likeapop beta from mean var
sound more like the pseudo-English they are. This fits with the style I push in the book,
where variables (except for the quick throwaways) have fullEnglish-word names, and
some effort is made to keep one thought per line and one line per thought.

• Letters per line. So I encourage English-word variable names and function names
that tell you what they do, and when I wrote Apophenia, I borrowed Mathematica’s rule
of abbreviating as little as possible, so the reader doesn’thave to remember whether to
typeapop est, apop estim, orapop estimate. That means a lot of characters
per line. A variable-width font will put more on a line than a same-hight fixed-width
font, because wide characters[mw-<>] are much less common than thin characters
[itl().,;/]. This wasn’t an issue for some code, but some snippets would have
had every darn line split in two if I did them with a fixed-widthfont.

1



That means that a fixed-width font would take up more verticalspace on the page,
and there’d be less flow with the text. This matters: as the guywho typeset the book,
I can tell you that many hours were spent making sure that whenthe text sayson line
six, you can see that. . . that you can actually see line six without turning a page.

• Precision. When reading text, you take in the wash of information, and as long
as details are unsurprising, your brain passes over them. When writing, you’re the
one placing all those letters, and need to make sure 100% of them are correct, lest
teh reader’s subconscious notcie something is wrnog. Because every character gets
equal weight, fixed width fonts don’t let periods, commas, and parens disappear into
the visual background.

So it makes sense that when writing code—or even human-language text—you’d
use a fixed-width font. In fact, this makes so much sense that Ihaven’t been able to
find any variant ofvi on my laptop here that would let me write codewithout a fixed
width for each letter. Even if I could find such a thing, I probably wouldn’t switch.

But when reading, the compiler in your brain will understandwhat’s going on
when I writeprintf("There are %i errors in this code" 2) as eas-
ily as if I wroteprintf("There are %i errors in this code.", 0);
though if you’re C-literate you’ll bristle at the missing comma and semicolon as much
as you did the English-language typos above. The semicolonsand commas absolutely
have to be in the right place, but I want you to read the code formeaning, not semi-
colon placement, and variable-width typefaces take the focus off of punctuation by
giving them a fraction of the space.

• The online supplement. You can (and should) get the code online, which gives
me a bit of an out: if you hate the typography, you can render itin your favorite font
via your text editor. But (and this is less of a cop-out) having two versions of the code
changes my expectations. I really did reprint the code in thebook so you can read on
the bus or at the beach.

[This is something I didn’t take lightly. The Apophenia library co-evolved with the book, which means

that it was almost by definition going to change post-publication. It did, and each printed code snippet is

now a constraint on further evolution. I’ve put an irrational amount of effort into revising Apophenia in

a manner that doesn’t break the printed code snippets. My version of Apophenia’s test suite, which I run

before shipping out a new version, re-tests most of the code snippets in the code supplement. If I’d told you,

the reader, that you can’t read this book unless you have a PC on hand to view the easy-to-revise online code

snippets, my life would have beenmuch easier.]

A friend commented to me once or twice that she picks books to read on the bus by
how much they’ll intimidate other riders (for whichModeling with Data is evidently
perfect). In my mind, this is how I picture the reader: looking out the window, listening
to pop on her headphones, trying to get the big picture, not worrying about where to
put the semicolons until she gets to her desk. At her desk, she’s got the digital version
of the code, which she can inspect character by character in her fixed-width text editor.

• Readers have expectations. Just as I couldn’t find a code-oriented text editor on
my laptop to render variable width type, I don’t know anybodywho writes code on the
screen with variable-width type. Good typography gets out of the way so the reader
can focus on the meaning of the words, not how they look. So thefact that no readers
think for a second about code in monospace but some do get thrown by variable-width
code is a definite argument for monospace.

2



• Syntax highlighting (i.e., putting type names and keywordsin boldface). Some
people put art on the wall beacause they really admire the work and want to have it
available to view as much as possible; some people put art on the wall because the wall
just looks blank without something.

Code is fundamentally choppy prose. In C, keywords and typestend to appear at
the beginning of a line, so putting them in boldface gives a nice cadence. Function dec-
larations alternate type-name, type-name, so putting types in boldface gives a kind of
trochaic feel to the line, and gives another visual marker atthe head of a new function.
For makefiles and the little languages used in the appendix (grep, sed, bash), syntax
highlighting felt haphazard and I turned it off.

All of which is to say that I highlight the keywords and types entirely because I
like the feel and texture more than without. I’ve seen a rant or two on this subject
by people who are on the other side of the fence—wedon’t boldface verbs when we
write, do we?—to which I would respond that prose already has cadence, and imposing
artificial stresses can only clash with the natural stressesof the language. Though this
is obviously a question of æsthetics that has no objective answer, so there’s no point in
earnestly debating anyway.

When writing code, syntax highlighting is essential, because it is another cue to
code that is wrong; at this point I feel a little at sea when I edit code without syntax
highlighting. I get the sense that syntax highlighting in books evolved in emulation of
the text editors (anybody want to fact check me on this claim?), but I don’t care about
the history; I just like it.

• Inline code versus code blocks. Writing about code is exceptionally meta-. It’s
like writing a lingustics book, where we might have a passageabout the wordthe versus
the worda. In fact, I have a TEX macro,airq, that I use for words in the text that I’d
surround with an air quote and air endquote if I were speaking. And in that sentence
you see that I used a monospace type to specify thatairq is not just a word in the
sentence, but the subject of discussion, a sequence of letters that a compiler will parse.

Math books are aware of this, and all mathematical text must be in a separate font
from the norm. If you wrote “Let x be a real number,” your editor would ding you—
it’s “let x be a real number.” The especially pedantic will point out that using italics
is even incorrect, but in practice TEX uses a different non-italic font for math, MSFT
Word doesn’t really have a different font available, and that determines what you’re
going to do.

In text, then, I use monospace for everything a parser would look at. This created
some really tough calls, by the way, because if the real number x is held in memory as
the variablex, do I instruct the reader “in the next step, doublex” or “next, doublex”?
My case-by-case decisions on this were probably inconsistent.

So code has to be in a monospace font in the text to indicate that it is the subject of
discussion, not just a word in my exposition. But none of thatis relevant for the code
listings in their own blocks. To give a literature metaphor,if I were to compare Poe’s
openingDuring the whole of a dull, dark and soundless day. . . to the cliché opening
it was a dark and stormy night, I would need to use italics to indicate that Poe’s text
is a subject of discussion. But to print the entirety of the opening sentence, I’d need
distinct spacing and a separate paragraph:

3



During the whole of a dull, dark, and soundless day in the autumn of the
year, when the clouds hung oppressively low in the heavens, Ihad been
passing alone, on horseback, through a singularly dreary tract of country;
and at length found myself, as the shades of the evening drew on, within
view of the melancholy House of Usher.

By being separated from my exposition about Poe, we recognize all of it as an
exhibit of Poe’s text, and don’t consider it an inconsistency that the block text under
discussion has different typography than the in-line. In fact, if I’d followed the typo-
graphical convention of italics for the whole pulled segment, you’d get annoyed by the
end of it.

Literaure uses a plain font in blocks; block math uses the same math font but more
comfortable spacing. So we find that we don’t need to rely on a typeface convention to
indicate that block text is a special object of study, but could keep the same convention
if so desired.

4


