
The great packaging problem–the easy part

Ben Klemens

16 May 2011

A library is a collection of functions and data structures. Given a set of libraries
installed in one place, functions in one library can readily call functions or structures
in another library. For example, a textbook recipe organizing program could use a
textbook XML library to save the recipes, so the author of the recipe program would
not rewrite any XML parsing routines, but just call them from the other library. In such
a setup, sets of functions will be organized into libraries, for the convenience of users,
who can pick those that they need.

[I’ll lean on library for now, though many systems call them packages, Ruby calls them gems, &c.]
The problem statement: how does a function in one library find a function in an-

other? This remains one of the great unsolved problems of modern computing. It
breaks down into two problems.

• Local: given a program installed on the hard drive, how does one find and load
the requisite file?

• Global: given all the computers of the world, how does one find a needed library?

Next time, I’ll be writing about the global problem, and discussing why it’s so
broken; as a warm-up, this time I’m starting with the local problem to show you just
how solved the local problem is. If you’ve never put thought into it, this may also help
you with debugging next time an installation fails.

It is solved in the same manner on every platform I’ve ever known: when a library
is needed, a small set of directories are exhaustively checked for libraries. The im-
plementation is even pretty similar in all cases, wherein an environment variable, like
R LIBS, LD LIBRARY PATH, PERLLIB, CLASSPATH, lists those directories that
should be checked, and when a new library gets called in by a running program, the
system checks each directory on the path in turn. If you’re using a system with some
sort of global registry (which is effectively a gigantic pile of environment variables),
then the path may be listed there. [Since this is a web site for Modeling with Data, let me mention
that Appendix A has more on getting and setting paths.]

The problem of installing a new library on an unknown system becomes the prob-
lem of knowing exactly where everything is. If a file needs to be generated, what
compiler is available; if there are files that need to be modified, where are they; what is
the right libpath to use for the given system?

A few libpaths are handed to you, like the ones that actully have an environ-
ment variable set. Or you could have the platform self-report its environment, like

1



a newlang --get environment command whose output the script could then
use, or you could force the user to have an environment variable on hand, or you could
use a local registry, or depend on the Linux Standard Base (an effort to define the right
paths once and for all), or use Autoconf’s voluminous hard-coded knowledge about
system-specific details, or just install in /usr/local/share no matter what. Everybody
has their custom, due to differing opinions about what is technically optimal and his-
torical glitches. But once you’ve found the right way to query the local system for
where everything is, you’ll have no problem putting everything in its right place.

GNU autotools asks the dependent library author for the name of the dependent-
upon library, and a sample function. It then produces a small program—basically just

int main(){your function();}
—and then compiles it via gcc -lyour libname sample program.c . If

that works, that we haven’t just asserted that the library is somewhere on the libpath, but
have actually tested that the library can be loaded and used, which is pretty cool. The
compiler will search its own libpath, so Autotools is implicitly searching the libpath by
free riding on another system that already does so.

So that’s the whole local library use problem:

• Search the libpath.

• If you found a match, optionally test that it’s valid, or just load it and hope it
doesn’t break.

• If it isn’t found, then it’s on to the global problem—search the planet Earth for
the library, and install it on the right path.

For installing a new system, we need to preface this with an initial step where we
work out what the local paths are. There are diverse solutions to that step, but just read
the platform’s manual and you’ll be fine. Next time, I’ll cover that last step of searching
for and installing a library or package from somewhere else.

2


