Tip 11: String literals

Ben Klemens

23 October 2011

level: intermediate string user
purpose: understand an annoying subtlety of C string handling

Here is a program that sets up two strings and prints them to the screen:

#include <stdio.h>
int main () {
char *sl = "Thread";

char *s2;
asprintf (&s2, "Floss");

printf ("%$s\n", sl);
printf ("%$s\n", s2);

Both forms will leave a single word in the given string. However, the C compiler
treats them in a very different manner, which can trip up the unaware.

Did you try the sample code in tip #10 that showed what strings are embedded into
the program binary? In the example here, Thread would be such an embedded string,
and s1 could thus point to a location in the executable program itself. How efficient—
you don’t need to spend run time having the system count characters or waste memory
repeating information already in the binary. I suppose in the 1970s this mattered.

Both the baked-in s1 and the allocated-on-demand s2 behave identically for read-
ing purposes, but you can’t modify or free s1. Here are some lines you could add to
the above example, and their effects:

s2[0]="f"; //Switch Floss to lowercase.
s1[0]="t’; //Segfault.

free(s2); //Clean up.
free(sl); //Segfault.

If you think of a bare string declared like "F1oss" as pointing to a location in the
program itself, then it makes sense that s1’s contents will be absolutely read-only.

[T honestly don’t know how your compiler really handles a constant string, but it is a fine mental model
to presume it is pointing to a point in the program, so writing upon is strictly forbidden.]

Did you think this would be a series about why C is better than every other language
in every way? If so, sorry to disappoint you. The difference between constant and
variable strings is subtle and error-prone, and makes hard-coded strings useful only in
limited contexts. I can’t think of a scripting language where you would need to care
about this distinction.

But here is one simple solution: strdup, which is POSIX-standard, and is short
for string duplicate. Usage:

char *s3 = strdup("Thread");

The string Thread is still hard-coded into the program, but s3 is a copy of that
constant blob, and so can be freely modified as you wish.

