
Tip 22: all the casting you’ll need

Ben Klemens

14 November 2011

level: intermediate
purpose: still less obsolete cruft in your life

There are two (2) reasons to cast a variable from one type to another.
First: when dividing two numbers, an integer divided by an integer will always

return an integer, so the following statements will be true:

4/2 == 2
3/2 == 1

That second one is the source of lots of errors. It’s easy to fix: if i is an integer, then
i + 0.0 is a floating-point number that matches the integer. Don’t forget the parentheses,
but that solves your problem:

4/(2+0.0) == 2.0
3/(2+0.0) == 1.5

You can also use the casting form:

4/(float)2 == 2.0
3/(float)2 == 1.5

I’m partial to the add-zero form, for æsthetic reasons; you’re welcome to prefer the
cast-to-float form. But make a habit of one or the other every time you reach for that /
key, because this is the source of many, many errors. [And not just in C; lots of other languages
also like to insist that int / int→ int. Not that that makes it OK.]

Second: array indices have to be integers. It’s the law (C standard §6.5.2.1), and
GCC will complain if you send a floating-point index. So, you may have to cast to an
integer, even if you know that in your situation you will always have an integer-valued
expression.

4/(float)2 == 2.0 //this is float, not an int.
mylist[4/(float)2]; //So this is an error: floating-point index

mylist[(int)(4/(float)2)]; //This works; take care with the parens

int index=4/(float)2;//This form also works,
mylist[index]; //and is more legible.

1



Now that I’ve covered both of the reasons to cast in C, I can point out the reasons
to not bother. Notice that the index variable above was an integer, but the right-hand
value was a floating-point number. C auto-casts in this case, truncating down to the
right value. If it’s valid to assign an item of one type to an item of another type, then C
will do it for you without your having to tell it to with an explicit cast; if it’s not valid,
then you’ll have to write a function to do the conversion anyway.

C++ isn’t like this: you have to explicitly cast in all cases. Fortunately, you’re
writing in C, so you can ignore C++ tutorials that tell you to explicitly cast. [And as a
broad rule that universally works for me: don’t bother with anything that uses C/C++ in the title.]

In the 1970s and 80s, malloc returned a char* pointer, and had to be cast (unless
you were allocating a string), with a form like:

//don’t bother with this sort of redundancy:
float* list = (float) malloc(list_length * sizeof(float));

You don’t have to do this anymore, because malloc now gives you a void*
pointer, which the compiler will comfortably auto-cast to anything.

If you check the examples above, you’ll see that I even gave you options to avoid
the casting syntax for the two legitimate reasons to cast: adding 0.0 and declaring an
integer variable for your array indices. Bear in mind the existence of the casting form
var_type2 = (type2) var_type1, because it might come in handy some day,
and in a few tips we’ll get to declarations that mimic this form. But for the most part,
explicit type casting is just redundancy that clutters the page.

2


