
Tip 35: Use the shell to test for files

Ben Klemens

10 December 2011

level: you want some automation out of your shell
purpose: look before you leap

Last time (Entry #084), I discussed how the shell can be used as a Turing-complete
programming language (and advised you to not use it as such). For example, you could
automate the sort of thing you’d type at a command line, like setting up a sequence of
runs of a program.

Now let’s say that your program relies on a data set that has to be read in from a
text file to a database. You only want to do the read-in once; in pseudocode: if database
exists do nothing, else generate database from text.

On the command line, you would use test, a versatile command typically built
into the shell. Run a quick ls, get a file name you know is there, and use test like
this:

test -e a_file_i_know
echo $?

By itself test outputs nothing, but since you’re a C programmer, you know that every
program has a main function that returns an integer, and we will use only that return
value here. Custom is to read the return value as a problem number, so 0=no problem,
and in this case 1=file does not exist. [Which is why, as per Tip #4 (Entry #053), the default is that
main returns zero.] The shell doesn’t print the return value to the screen, but stores it in a
variable, $?, which you can print via echo.

OK, now let us use it in an if statement to act only if a file does not exist. As in C,
! means not.

if test ! -e a_test_file; then
echo test file had not existed
touch a_test_file

else
echo test file existed
rm a_test_file

fi

Notice that, as with the for loops from last time, the semicolon is in what I con-
sider an awkward position, and we have the super-cute rule that we end if blocks with

1

fi. To make it easier for you to run this repeatedly using !!, let’s cram it onto one
margin-busting line. The keywords [and] are equivalent to test, so when you see
this form in other people’s scripts and want to know what’s going on, the answer is in
man test.

if [! -e a_test_file]; then echo test file had not existed; touch a_test_file; else echo test file existed; rm a_test_file; fi

The multi-line version would make a fine header for the script from last time: start
with some if statements to check that everything is in place, then run a for loop to
run your program a few thousand times.

The condition is considered to be true when the evaluated expression is zero (=no
problem), and false when it is nonzero (=problem). So outside of the test command
you can think of the typical if statement as if the program ran OK, then. . . , which
makes it perfect for error checking:

#generate some test files
mkdir a_test_dir
echo testing ... testing > a_test_dir/tt

#Remove the test files iff they were archived right
if tar cz a_test_dir > archived.tgz; then

echo Compression went OK. Removing directory.
rm -r a_test_dir

else
echo Compression failed. Doing nothing.

fi

[If you want to see this fail after running once, try chmod 000 archived.tgz to make the desti-
nation archive unwriteable, then re-run.]

2

