
Tip 40: Designated initializers

Ben Klemens

20 December 2011

level: struct user
purpose: understand your own code

I’m going to define by example today. Here is a short program that just prints a
box to the screen. You get to specify whether you want the star to be in the upper right,
left, center, et cetera by setting up a direction t structure. [I made up and down
doubles just for the sake of having multiple types in the struct.]

The printing is simple, and is cleaned up by what I called the Obfuscatory If in
Modeling with Data. [I was too harsh.]

The focus is in main, where we declare three of these structures using designated
initializers—i.e., we designate the name of each structure element in the initializer. I’ll
meet you on the other end of the code to discuss further.

#include <stdio.h>

typedef struct {
int left, right;
double up, down;

} direction_t;

void this_row(direction_t d); //see below
void draw_box(direction_t d);

int main(){
printf("left:");
direction_t D = {.left=1};
draw_box(D);

printf("upper right:");
D = (direction_t) {.up=1, .right=1};
draw_box(D);

printf("center:");
draw_box((direction_t){});

1

}

/* Print a box. Don’t bother reading these
if you don’t feel like it. */

void this_row(direction_t d){
printf(d.left ? "*..\n"

: d.right ? "..*\n"
: ".*.\n");

}

void draw_box(direction_t d){
printf("\n");
d.up ? this_row(d) : printf("...\n");
(!d.up && !d.down) ? this_row(d) : printf("...\n");
d.down ? this_row(d) : printf("...\n");
printf("\n");

}

The old school alternative was to memorize the order of struct elements and initial-
ize all of them without any labels, so the upper right declaration would be:

direction_t upright = {0, 1, 1, 0};

This is illegible and makes people hate C. Outsize of the rare situation where the
order is natural and obvious, please consider the unlabelled form to be deprecated.

Notice also that in the setup of the upper right struct, I had designated elements
out of order relative to the proper structure. Life is too short to remember the order of
arbitrarily-ordered sets—let the compiler sort ‘em out.

What about the elements not declared? They’re initialized to zero. No elements are
left undefined.

Remember compound literals (Entry #074), which I’d introduced in terms of ar-
rays? Being that structs are just arrays with named and oddly-sized elements, you can
use them for structs too, as I did in the upper right and center structs in the sample
code. As before, you need to add a cast-like (typename) before the curly braces.
The first example in main is a direct declaration, and so doesn’t need the compound
initializer syntax.

To do:
Rewrite every struct declaration in all of your code to use designated initializers. I
mean this—the old school way was terrible. Notice also that you can rewrite junk like

direction_t D;
D.left = 1;
D.right = 0;
D.up = 1;
D.down = 0;

with

direction_t D = {.left=1, .up=1};

2

