Tip 53: Count references

Ben Klemens

15 January 2012

level: your data structures are getting busy
purpose: Know when to hold ‘em; fold ‘em

Last time, we saw the situation where there was one data set being viewed many
times, meaning that one struct was canonical and the others, although otherwise iden-
tical, were subsidiary.

This time, we’ll point to the same data many times over, and each pointer will be
identical. After we have two or three references to the data, we won’t know or care
which came first. But the problem is similar: we need to free the struct and its contents
when there are no references to it left, and no sooner.

Adding an owner bit to the structure was an easy four-step process last time, and
it’ll be approximately the same process this time:

e The type definition includes an integer named counter.
e The new function sets counter = 1.
e The boilerplate copy function sets counter++.

e The free function queries if (-—counter==0), and if yes, then free all
shared data; else, just leave everything as is, because we know there are still
references to the structure.

Again, as long as your work with the structure is entirely via the new/copy/free
functions, this will work fine.

Here’s another full example. It is an agent-based model of group membership.
Agents are on a two-dimensional preference space (because we’ll plot the groups) in
the square between (—1,—1) and (1,1). Their utility from a group is -(distance to
group’s mean position + M*number of members). The group’s mean position is simply
the mean of the positions of the group’s members (excluding the agent querying the
group), and M is a constant that scales how much the agents care about being in a large
group relative to how much they care about the group’s mean position. At each round,
agents will join the group with the best utility to the agent.

With some random odds, the agent will originate a new group. However, because
agents are picking a new group every period, the agent may abandon that newly origi-
nated group in the next period.



Brace yourself—this takes almost 125 lines of code.

The header. What I call the join and exit functions might more commonly be read as
the copy and free functions. The group_t structure has a size element, which is the
number of group members—the reference count. You can see that I use Apophenia and
Glib. Notably, the groups are held in a linked list, private to the groups.c file; maintain-
ing that list will require fully two lines of code, including a call to g_1ist_append
and g_list_remove

#include <apop.h>
#include <glib.h>

typedef struct {
gsl_vector xpositions;
int id, size;

} group_t;

group_t* group_new(gsl_vector x*positions);

group_t* group_join(group_t =xjoinme, gsl_vector #*position);
void group_exit (group_t =xleaveme, gsl_vector xposition);
group_t* group_closest (gsl_vector *xposition, double mb);
void print_groups();

Now for the file defining the details of the group object. Notice that the printout
function is Gnuplot friendly. If you use another plotting system, it shouldn’t take but a
few seconds to rewrite it as needed.

#include "groups.h"
GList *group_list;

group_t xgroup_new(gsl_vector #*positions) {
static int id=0;
group_t *out = malloc(sizeof (group_t));
xout = (group_t) {.positions=apop_vector_copy (positions), .id=id++, .size=1}
group_1list = g_list_append(group_list, out);
return out;

//The copy function
group_t #*group_join (group_t =*joinme, gsl_vector *position) {
int n = ++joinme->size; //increment the reference count
for (int i=0; i< joinme->positions->size; i++) {
joinme->positions->datali] *= (n-1.)/n;
joinme->positions—>datal[i] += position->datali]/n;
}

return joinme;



//The free function
void group_exit (group_t xleaveme, gsl_vector #*position) {
int n = leaveme->size-—-; //lower the reference count
for (int i=0; i< leaveme->positions—->size; i++) {
leaveme—->positions—>data[i] —-= position->datalil]/n;
leaveme—->positions—->data[i] = n/(n-1.);
}
if (leaveme->size == 0){ //garbage collect?
gsl_vector_free(leaveme->positions);
group_list= g_list_remove (group_list, leaveme);
free (leaveme) ;

group_t xgroup_closest (gsl_vector xposition, double mass_benefit) {
group_t =xfave=NULL;
double smallest_dist=GSL_POSINF;
for (GList xgl=group_list; gl!= NULL; gl = gl->next) {
group_t *g = gl->data;
double dist= apop_vector_distance (g->positions, position, ’'L’, 3)-
mass_benefitxg->size;
if (dist < smallest_dist) {
smallest_dist = dist;
fave = g;

}

return fave;

void print_groups () {
printf ("plot ’'-’ with points pointtype 6\n");
for (GList *gl=group_list; gl!= NULL; gl = gl->next)
apop_vector_print (((group_t*)gl->data)->positions);
printf ("e\n");

The program file, defining the array of persons, and the main loop of rechecking
memberships and printing out. At this point all interface with the groups happens via
the new/join/exit/print functions. There is zero memory management code in this file—
the reference counting guarantees us that when the last member exits the group, it will
be freed.

Again, main does some Gnuplot-specific stuff, so if you saved this as groupabm. c,
then call groupabm | gnuplot on your command line. You can watch the group
centers space out, and occasionally merge or split.

#include "groups.h"



int pop=2000,
periods=200,
dimension=2;

typedef struct {
gsl_vector xpositions;
group_t *group;

} person_t;

void check_membership (person_t *p, gsl_rng *xr, double mass_benefit, double new_g
group_exit (p—>group, p->positions);
p—>group=NULL;
if (!p->group) p->group =
(gsl_rng_uniform(r) < new_group_odds)
? group_new (p—>positions)
group_join (group_closest (p—>positions, mass_benefit), p->position

person_t person_setup(gsl_rng *r) {
gsl_vector xposn = gsl_vector_alloc(dimension);
for (int i=0; i< dimension; i++)
gsl_vector_set (posn, i, 2xgsl_rng_uniform(r)-1);
return (person_t) {.positions=posn};

void init (person_t xpeople, int pop, gsl_rng =r) {
for (int i=0; i< pop; i++)
people[i] = person_setup(r);
//start with ten groups
for (int i=0; i< 10; i++)
people[i] .group = group_new (people[i] .positions);
for (int i=10; i< pop; i++)
people[i] .group = group_join (people[i%10].group, peopleli].positions);

int main () {
double new_group_odds = 1./pop,
mass_benefit = .7/pop;

gsl_rng xr = apop_rng_alloc(1234);
person_t peoplelpopl];
init (people, pop, r);
printf ("unset key;set xrange [-1:1]\nset yrange [-1:1]1\n");
for (int t=0; t< periods; t++) {

print_groups();

for (int i=0; i< pop; i++)



check_membership (&people[i], r, mass_benefit, new_group_odds);



