
Tip 56: Enums—don’t bother

Ben Klemens

21 January 2012

level: You have laundry lists
purpose: don’t force users to memorize your laundry lists

Enums are a good idea that went bad.
The benefit is clear enough: integers are not at all mnemonic, and so wherever you

are about to put a short list of integers in your code, you are better off naming them.
Here’s (the even worse means of) how we could do it without the enum keyword:

#define NORTH 0
#define SOUTH 1
#define EAST 2
#define WEST 3

With enum, we can shrink that down to one line of source code, and our debugger
is more likely to know what EAST means; here’s the improvement over the sequence
of #defines:

enum directions {NORTH, SOUTH, EAST, WEST};

But we now have five (5) new symbols in our global space, including directions
and NORTH, SOUTH, et al.

For an enum to be useful, it typically has to have global scope. For example,
you’ll often find enums typedefed in the public header file for a library. Having a
global variable creates responsibilities. To minimize the chance of namespace clashes,
library authors use names like G_CONVERT_ERROR_NOT_ABSOLUTE_PATH or the
relatively brief CblasConjTrans. I have to look them up every time and they take
up half the line.

At which point an innocuous and sensible idea has fallen apart. I don’t want to type
these messes, and I use them so infrequently that I have to look them up every time
(especially since many are infrequently used error values or input flags). Also, all caps
continues to read like yelling.

My own habit is to use single characters, wherein I would mark transposition with
’t’ and a path error with ’p’. I think this is enough to be mnemonic—in fact, I’m
far more likely to remember how to spell ’p’ than how to spell the above all-caps
mess—and it requires no new entries in the namespace.

1



Before you start arguing easy-to-parody efficiency issues, bear in mind that an enu-
meration is typically an integer, while char is really just C-speak for a single byte.
So when comparing enums, you will likely need to compare the states of about six-
teen bits, while with a char, you need compare only eight. ‘A two-fold speed gain!,
dropping the time for this comparison from effectively zero and not worth tracking to
effectively zero and still not worth tracking.

We sometimes need to combine flags. When opening a file using the open system
call, you may need to send O_RDWR|O_CREAT, which is the bitwise combination of
the two enums. You probably don’t use open directly all that often; you are probably
making more use of fopen, which is more user friendly. Instead of using an enum,
it uses a one- or two-letter string, like "r" or "r+" to indicate whether something is
readable, writeable, both, et cetera.

In the context, you know "r" stands for read, and if you don’t have the convention
memorized, you can confidently expect that you will after a half-dozen more uses of
fopen. Whereas I still have to check whether I need CblasTrans, CBLASTrans
CblasTranspose, . . . , every time.

Again, caring about the runtime efficiency thing is ‘70s. The twenty seconds it takes
to look up an awkward enum times a dozen re-lookups is equivalent to a few billion
strcmps between two two- or three-letter strings. If you really think it matters, then,
as above, you’d rather use a single character than an enum.

On the minus side, there is compiler checking on enums, where if you mistype
one the compiler stops and forces you to fix your typo. You have a small, fixed set
of symbols. With strings, you won’t know you had a typo until runtime. On the plus
side, strings are not a small, fixed set of symbols, so you can more easily extend the
set of enums. For example, I ran into an error handler that offers itself for use by other
systems—as long as the errors your system generates match the four enumerated errors
this system can produce. If the errors were short strings, extension by others would be
trivial.

There are reasons for using enums: sometimes you have an array that makes no
sense as a struct but that nonetheless requires named elements; when doing kernel-
level work, giving names to bit patterns is essential. But in those cases where enums
are used to indicate a short list of options or a short list of error codes, a single character
or a short string can serve the purpose without cluttering up the namespace or authors’
memory.

2


