Tip 71: Don’t confuse pointer declarations with
pointer uses

Ben Klemens

21 February 2012

level: confused by pointers
purpose: be less confused by pointers

The ostensible rationale for the pointer declaration syntax is that the use and the
declaration look alike. What they mean by this is that when you declare

int *i;

then «1i is an integer, so it’s only natural that we’d declare that «1 is an integer via
int 1.

So that’s all well and good, and if it helps you, then great. I’'m not sure if I could
invent a less ambiguous way of doing it.

Here’s a common design rule, espoused throughout The Design of Everyday T hingsﬂ
for example: if things have different function, then make them look different. That book
gives the example of airplane controls, where two identical levers often do drastically
different things.

Here, C syntax crashes and burns, because =1 in a declaration and =1 outside of a
declaration do very different things. Examples:

int i = 23; //wrong
xi = 23; //right
int *i = malloc(l); //right

I’ve thrown the rule that declaration looks like usage out of my brain. Here’s the
rule I use, which has served me well: in a declaration, a star indicates a pointer, off
declaration, a star indicates the value of the pointer.

Here is a valid snippet:

int 1 = 13;

int *xj = &i;
int *xk = j;
*j = 12;

"http://www.jnd.org/books.html#33

http://www.jnd.org/books.html#33

Using the rule above, you can see that on line two, the initialization is correct
because = 7 is a declaration, and so the address of a pointer. On line three, xk is also
the address of a declaration, so it makes sense to assign it to j, the address of a pointer.
On the last line, = 7 is not in a declaration, so it indicates a plain integer, and so we can
assign 12 to it (and i will change as a result).

OK, that’s all today: bear in mind that when you see x1i on a declaration line, it is
a pointer-to-something; when you see i on a non-declaration line, it is the pointed-to
value.

