Tip 79: Try a multiplexer

Ben Klemens

8 March 2012

level: command-liner
purpose: so very much

I always have two terminals open when coding: one with the code in an editor,
and one for compiling and running the program (probably in a debugger). Working on
an R package, I’ll have a terminal with C side code, a terminal with the R side code, a
compilation/run terminal, and because R is so undocumented a window with R’s source
code.

Deftly jumping among terminals has suddenly become incredibly important.

There are two terminal multiplexers to choose from, on either side of the great
GNU|BSD rivarly: GNU Scree and tmu

Not to take sides on the license thing, but tmux is more recently written and has
learned from some of GNU Screen’s mistakes. I like Screen’s copy mode better. Maybe
next year all that will be reversed.

Your package manager will probably install either or both of them.

Both work via a single command key. GNU Screen defaults to <ctrl>-A. Tmux
defaults to <ctrl>-B, but the consensus seems to be that everybody remaps that to use
<ctrl>-A instead, by adding

unbind C-b
set —-g prefix C-a
bind a send-prefix

to .tmux_conf in their home directory. There are lots of other things that you
can add to your configuration files. I’'m not going to read you the manual here, just
point out to you how really fabulous these things are so you’re compelled to try them.
[When searching for tips and documentation, notice that GNU Screen is the name to type into your search
engine, because Screen by itself will get you nowhere.]

Once you’ve done that, <ctr]>-A <ctrl>-A jumps between two windows, and you
can RTFM for the <ctrl>-A (otherkey) combinations that will let you step forward or
backward in the window list, or display the full list of windows so you can just pick
from the list.

So both of these guys solve the multi-window problem. But they do so very much
more:

Ihttp://www.gnu.org/software/screen/
Zhttp://tmux.sourceforge.net/

http://www.gnu.org/software/screen/
http://tmux.sourceforge.net/

e OK, you have a session with several windows up. <ctrl>-A D will detach the
session, meaning that your terminal no longer displays the various virtual termi-
nals under the multiplexer’s control. But they’re still running in the background.

— Got a spotty connection to your server in Belize? No problem, because after
you’re unexpectedly disconnected, you can reattach to pick up where you
left off. [If the detach didn’t happen cleanly, use screen -r —d or tmux detach;

tmux attach.]

— Log in to your server in the morning, work all day with GNU Screen/T-
mux, detach at the end of the day (or let your session time out, which is
an auto-detach). Tomorrow morning, use screen —-rortmux attach
to reattach to the full set of screens you left last night. No need to kill ten
minutes restoring where you were last night.

— While you were sleeping, anything you had running is still running. So
if you need something to run all night and don’t remember the commands
and tricks to get a program to keep running after you close the terminal
(hint: nohup), then don’t worry about it: the multiplexer keeps its virtual
terminals open even after you’ve detached.

o There’s a cut/paste feature.

— OK, now we’re really mouseless: once in copy mode, you can page through
what’s passed through the terminal lately, highlight a section, and copy it
to the multiplexer’s internal clipboard via <ctrl>-A [(or one or two other
keys). Then, back in regular mode, <ctrl>-A] pastes.

— While you’re browsing for things to cut, you can scroll through the history
comfortably. Both systems provide a search while in copy mode, which
means that you finally have a search function for your terminal.

OK, how’s that for a sell? These multiplexers really take that last step from making
the terminal a place to work to being a fun place to work.

