Tip 81: Deprecate floats

Ben Klemens

12 March 2012

level: basic numerics
purpose: Ignore lots of caveats

I don’t know if you’ve noticed, but I stopped using f1loat.

There’s a lot of advice about how you’ve got to be careful about avoiding floating-
point tricks all the way along. Much of it is still valid today, but much of it is easy to
handle quickly: use double instead of float.

For example, have a look at the caveat on p 24 of Writing Scientific Softwar
which advises users to avoid what they call the single-pass method of calculating vari-
ances.

They give an example which is ill-conditioned. I reprint their list of numbers below,
and you can see that even though the numbers are in the tens of thousands, they differ
mostly after the decimal. The authors get terrible results, with a variance that seems
off by two orders of magnitude.

Apophenia uses the advised-against single-pass method, as does the GSL. How bad
are the results? Not bad at all, actually.

Here’s the code to run their example. I do the example twice: once with the ill-
conditioned version, and once after subtracting 34,120 from every number, which thus
gives us something that even a plain £1oat can handle with full precision. We can be
confident that the results given the not-ill-conditioned numbers are accurate.

#include <apop.h>

int main () {
apop_data xd = apop_data_fill (apop_data_alloc(l, 6),
34124.75,
34124 .48,
34124.90,
34125.31,
34125.05,
34124.98);

double m, var;
apop_matrix_mean_and_var (d->matrix, &m, &var);

http://books.google.com/books?id=E6a8020S8noC


http://books.google.com/books?id=E6a8oZOS8noC

printf ("mean: %.10g var: %.10g\n", m, var=6/5.);

apop_data_fill (d,
4.75,

.48,

.90,

.31,

.05,

.98);

TG 2 B ) T AN

apop_matrix_mean_and_var (d->matrix, &m, &var);
printf ("mean: %.10g var: %.10g\n", m, var=6/5.);

e Apophenia returns the population variance; we scale to produce the sample vari-
ance, which the authors prefer.

e [ used %g as the format specifier in the printfs; that’s the ‘general’ form,
which accepts both floats and doubles.

e Internally, apop_matrix_mean_and_var uses a long double, follow-
ing the basic principle that you should keep your intermediate values one step
more precise to prevent intermediate roundoffs from aggregating into problems.
It used to just use a double, and the results weren’t actually different.

Here are the results:

mean: 34124.91167 var: 0.07901676614
mean: 4.911666667 var: 0.07901666667

So the means are off by 34,120 but otherwise precisely identical (the .66666 would
continue off the page if we let it), and the variances differ by one in the sixth nonzero
digit, which is frankly not worth caring about. The ill-conditioning had no appreciable
effect.

That, dear reader, is technological progress. Where a book from 2006 told us to
take great care in implementing algorithms, all we had to do was throw twice as much
space at the problem. If there’s a speed difference between a program written with all
doubles and one written with all £1oats, I certainly can’t perceive it, and it’s worth
extra seconds to be able to ignore so many caveats.

long long int Should we use 1ong ints everywhere integers are used? The case
isn’t quite as open-shut. A float representation of 7 is more imprecise than a
double representation of 7, even though we’re in the ballpark of three; both int
and long int representations of numbers up to a few billion are precisely identi-
cal. The range of integers goes up to about £ 2.1 billion on a typical machine (I read
that on some machines it can be scandalously short, like around 30,000 but I wonder
if those are all obsolete at this point). If you think there’s even a remote possibil-
ity that you have a variable that might multiply its way up to the billions (that’s just



200 x 200 x 100 x 500), then you certainly need to use a Long int orevena long
long int, or else your answer won’t just be imprecise—it’ll be entirely wrong, as C
suddenly wraps around from +2.1 billion to -2.1 billion.

long intsaren’t quite as immediate a drop-in replacement for ints as doubles
are for floats. I suppose long int looks ugly all over the place, though you can
get away fine with just writing 1ong, and you’ll need to modify all your print fs to
use 311 instead of $i. Have a look at /usr/include/limits.h for details; on
my machine it says that int and long int are actually identical.

But, again, if there actually is a cost to using 1longs and long longs with great
frequency, it’s darn cheap relative to the cost of going over the max and rolling over to
a negative number.



