
A sample transformation: truncation, 6 June 2013

Ben Klemens

In the the last entry (entry #148), I enthused about how much mileage we can
get with a standard model object and a set of standard transformations thereof—and I
haven’t even gotten to Bayesian updating and hierarchical modeling, which will come
next time.

In this entry, I’ll present a demo implementation of a truncate-at-zero transforma-
tion. It gives me another excuse to show how more offbeat models can be given entirely
standard treatment. For those of you who might want to implement something like this,
via whatever platform, you might gain benefit from seeing the method I use to imple-
ment transformations. Some of you might find this entry to be TMI, in which case,
come back in three days.

A brief apology I’m using Apophenia for all of the examples because, as noted in
prior posts, I really don’t think there’s anything out there like it. C custom is to put a
library-specific prefix at the head of every function or structure in a library, to prevent
name conflicts, so you’ll see a lot of apop_s in the code below. It gets monotonous,
but is very clear. If you think I’m being a narcissist for writing around the library
of stats functions I wrote, I’ll hook you up with the people who think I need to do
exponentially more self-promotion and you can debate amongst yourselves. At least I
didn’t name the package after myself [I’m lookin’ at you, Ross and Robert (smiley face)].

If you hate C, I encourage you to try reading through the sample code anyway and
see if you get the gist even if the extra stars and ampersands seem like line noise (and
then get my C textbook so it’ll all become clear. . . ).

As a final apology, writing this revealed a bug in the apop_beta model, so you’ll
want to download a recent copy of the library to run this against.

An example: the round trip I’ll first walk you through the use of the transformation,
and then its construction.

[To run these, you’ll need to compile them together. In my series of tips on scientific computing, maybe
you recall that tip #1 was to (entry #050, use a makefile). Here’s the makefile I use for this pair of files: ]

CFLAGS =−g −Wall −O3 ‘pkg−config −−cflags apophenia‘ −DTesting
LDLIBS=‘pkg−config −−libs apophenia‘
CC=c99

149−roundtrip: 149−truncate.o

One of my favorite tests of a model is a round-trip where we start with a set of
parameters, draw a few thousand elements using the RNG, and then use those elements

1



as a data set to estimate parameters. If the parameters at the end of the round trip are
reasonably close to the parameters we started with, then we have more confidence that
the model is at least internally consistent.

Here’s a summary and reduction of what happens to the Normal distribution in the
sample:

apop model ∗m = apop model set parameters(apop normal, 1, 1);
apop model ∗mt = truncate(m);
apop data ∗draws = apop model draws(mt, 2e5);
apop mode ∗mt est = apop estimate(draws, ∗mt);
apop model show(mt est);

Every line is either a transformation of a model or a use of a model:

• Start with an unparameterized stock apop_normal.
• Set its parameters to (1¡—,—¿ 1)¡—,—¿ creating a parameterized model.
• Apply the truncation function to create a truncated¡—,—¿ parameterized model.
• Use the model to make 20,000 draws.
• Use the data and the truncated model (the parameters will be thrown away) to

estimate the parameters given the data set. This produces a new model with
non-NULL parameters.

• Print the estimated model parameters to the screen¡—,—¿ so we can see that the
results are reasonably close to the original parameters of (1¡—,—¿ 1).

Here’s the actual program. I broke this up into main and round_trip functions,
so I can do the draw-and-estimate routine for all four models.

The transformation As is custom with many C files, it’s best to read from the bottom
up, as the last function in the file is where execution starts, and that function calls
elements declared earlier in the file, which call elements still earlier in the file.

At the bottom, you’ll find the transformation function, truncate_model. It
outputs a model object, so everything above that point describes the model object to
be returned. These were the only two items also defined in the file above that makes
use of the transformation, so you can see that the rest of this file can remain private,
internal workings to the transformation.

The function itself only has to make a copy of the truncated_model, store a
copy of the original model in the new model (the apop_model object has a ->more
pointer just for purposes like these) and wire the two parameter sets together.

The truncated model that gets returned is declared in the line above the truncate_model
function: it has log likelihood, draw, and prep functions, which are as described. The
prep function is Apophenia-specific, and is what gets called by the apop_estimate
function to make sure the parameter set isn’t NULL and other such housekeeping.

The RNG for a truncated model is straightforward: just keep drawing from the base
model until we get a draw that isn’t below the cutoff. This may be inefficient, but it’s
one line of code and works for any arbitrary model. If you have a more efficient method
for a specific model, you can substitute it in post-transformation:

2



#include <apop.h>

apop model truncated model; //these two will be defined in the next file.
apop model ∗truncate model(apop model ∗in, double cutoff in);

void round trip(apop model ∗m){
apop data ∗draws = apop model draws(m, 2e5);
//Uncomment these two lines if you want to look at the data and have Gnuplot installed:
//Apop col(draws, 0, v);
//apop plot histogram(v, .bin count=100, .output pipe=popen(”gnuplot −−persist”, ”w

”));

//this copying and NULLifying is unnecessary; it’s just so you know I’m not cheating.
apop model ∗clean copy = apop model copy(∗m);
clean copy−>parameters = NULL;

apop model show(apop estimate(draws, ∗clean copy));
}

int main(){
printf(” N(1, 1)\n”);
apop model ∗m = apop model set parameters(apop normal, 1, 1);
round trip(m);

printf(”\n truncated N(1, 1)\n”);
apop model ∗mt = truncate model(m, 0);
round trip(mt);

printf(”\n Beta(.7, 1.7)\n”);
m = apop model set parameters(apop beta, .7, 1.7);
round trip(m);

printf(”\n Truncated Beta(.7, 1.7)\n”);
mt = truncate model(m, .2);
round trip(mt);

}

3



#include <apop.h>

double cutoff; //A global variable, so you know this isn’t for production use.

double under cutoff(double in){ return (in < cutoff); }

long double like(apop data ∗d, apop model ∗m){
double any under cutoff = apop map sum(d, .fn d=under cutoff, .part=’a’);
if (any under cutoff) return −INFINITY;

//apop cdf wants an apop data set; we have a bare double
gsl vector view gv = gsl vector view array(&cutoff, 1);

return apop log likelihood(d, m−>more)
− (d−>matrix ? d−>matrix−>size1 : d−>vector−>size) ∗ log(1 − apop cdf(&(

apop data){.vector=&gv.vector}, m−>more));
}

void r(double ∗out, gsl rng ∗r, apop model ∗m){
do apop draw(out, r, m−>more); while (∗out < cutoff);

}

void prep(apop data ∗d, apop model ∗m){
apop model ∗base model = m−>more;
apop prep(d, base model);
m−>vsize = base model−>vsize;
m−>msize1 = base model−>msize1;
m−>msize2 = base model−>msize2;
m−>parameters = base model−>parameters;

}

apop model truncated model = {”A truncated univariate model”, .log likelihood= like, .draw=
r, .prep=prep};

apop model ∗truncate model(apop model ∗in, double cutoff in){
cutoff = cutoff in;
apop model ∗out = apop model copy(truncated model);
out−>more = in;
out−>dsize= in−>dsize;
out−>constraint= in−>constraint;
return out;

}

4



apop model ∗truncated = truncate model(apop normal, 0);
truncated−>draw = your super efficient normal draw function;

Cutting off a chunk of the distribution would change the total density unless we
compensate, so if the original probability given parameters p and data point d had been
Pmod(d, p), then after we cut off everything below cutoff C, the new probability is

Ptrunc(d, p) =
Pmod(d, p)

1− CDF (C, p)
.

Of course, if a data point is below the cutoff, that has probability zero and thus log
probability −∞.

So there’s the tour of the code: the transformation function outputs a model that
wraps the code in a simple model object that does the appropriate transformations to
the base model that it holds in its internal storage, then the main routine can live up to
the promise of egalitarian treatment of the pre- and post-transformation models.

As a final point of foreshadowing of future entries, those of you who got this com-
piled and running will notice how each run produced a covariance matrix for the pa-
rameters.

5


