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Let us say that our model is a deterministic formula f : P → D (or g : D → P).
The likelihood function

L(d, p) =
{

1, d = f(p)
0, all other cases

is . . . unsatisfying. A few entries ago (entry #152), I presented a variant of linear
regression with the convenient feature that it rejects the null hypothesis of β = 0
with probability one. It was dissatisfying (partly) because it was artificially overconfi-
dent; using a deterministic function as a likelihood, claiming that L(f(p), p) = 1 but
L(f(p) + ε, p) = 0, is even more unsatisfying for the same reason.

We accommodate uncertainty in a few ways.
One is to add a loss of some sort. Given observed data dobs, define ∆ ≡ |f(p) −

dobs|. We could define the likelihood L(∆) as:

• 1
1+∆

• 1
1+∆2

• for fixed α > 0,
{

1− α∆, ∆ ≤ 1/α
0, ∆ > 1/α

• exp(−∆)
• exp(−∆2)

These all share the intuitive characteristic that they are largest at ∆ = 0 and get
smaller as ∆ → ∞. You could easily come up with many other functions that share
this basic requirement.

For the first loss function, 1/(1+∆), the integral from ∆ = 0 to ∆ = k is log 1 + k,
which goes to infinity as k →∞; that makes it inadmissible as a likelihood function.

For the others, it is increasingly a judgment call as to which is preferable. The
consensus choice is of course exp(−∆2), because there are central limit theorems that
posit that this is the outcome from a sequence of iid draws being averaged together.

In case I’m not clear here, ordinary least squares is the prime example of this form:
let the data be decomposable into independent and dependent components [Y X]; then
f([Y X]) = (X ′X)−1X ′Y ≡ β, and we assume the loss ∆ ≡ Y − βX is Normally
distributed.
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Textbooks will typically put some verbiage in here about how, if you have the
‘correct’ model, then the errors should be Normally distributed white noise. [They will
then search a subspace of measure zero within the space of models for the correct model.] This setup is
perfectly reasonable and plausible, but do note that the design right from the start is that
we have some theory about f(·), and ∆ is outside of that theory, so it really provides
no information about its distribution. The deterministic function that is the core of the
model and the distribution of ∆ are separated by construction.

The Agent-based alternative A few posts ago (entry #153), I discussed the idea of
using an RNG as the basis of a model, deriving the likelihood from the RNG. Last time
(entry #154), I presented the example of a simple agent-based model to show how that
RNG can be a simulation that explicitly describes decisions, interactions, and aleatory
behavior within the steps of a narrative. In the simple demand-side example from last
time, the price pwas a parameter of the model, and agents randomly receive coefficients
α and b and then pick quantities q1 and q2 to maximize utility U = qα1 + q2 subject
to budget constraint b = pq1 + q2. A Normally-distributed α or b would translate into
distributions on q1 and q2.

Once again, we’ve found a way to produce a distribution that is not deterministic
or that otherwise makes it trivial to reject a null hypothesis. We’ve acknowledged that
the world is uncertain.

But randomness has been pushed forward to the beginning of the model: we are
uncertain about the coefficients. In this case, given the coefficients, there is a determin-
istic calculation to get to [q1, q2], but a more complex model could easily add aleatory
steps subsequent to that point. Contrast this to the deterministic component-plus-error
likelihood which assumes separability from the start.

There are two points here: the first is that the ABM way of accommodating un-
certainty is not necessarily more or less plausible than the traditional—let’s call it
Frequentist—way of doing things. We just put the uncertainty earlier in the model
and reserve the option to have as many random steps as our narrative requires.

The second point is that when we talk about parameters of the model having un-
certain terms, we are fast treading on Bayesian territory. The Bayesian way is also
to push randomness to the beginning of the model. The typical Bayesian textbook
presents a likelihood function that is a typical textbook distribution, and then allows its
parameters to vary according to a prior distribution; while our demand-side example
presents a likelihood function defined by a narrative description, such as a simple util-
ity maximization model, and then allows its parameters to vary according to a set of
distributions.

Next time, I’ll present a worked example.
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