
Uncertain ABM settings

Ben Klemens

24 July 2013

Last time (entry #155), I talked about how a good narrative model accommodates
uncertainty all the way through, as opposed to a model that posits a deterministic rela-
tionship f(x) and then fuzzes it into f(x) + ε, where ε is random error.

Bayesian Updating is one means of adding uncertainty earlier in the pipelin, but it
has a specific form: we start with a prior model with parameter and data space Pp and
Dp and a likelihood model with spaces PL and DL. If Dp = PL, the it makes sense to
draw RNGp(p), with p ∈ Pp, and then accept or reject them based on the likelihood
LL(d, p), where d ∈ DL. This formulation is a bit like a stream of water with a valve,
or a transistor: a stream of draws from Dp comes through, and the likelihood allows
some portion of the flow through but blocks other parts. The final product must be a
set of observations in Dp = PL, or if you can parameterize it, new parameters in Pp.

But there may be other parts to a model. Here, I make a distinction between param-
eters and settings, where I define those two classes of variable with a question: would
you optimize over the variable with a maximum likelihood search? If yes, then it’s a
parameter; else it’s a setting. For example, our model might put out a histogram, and
the number of bins is worth tweaking but typically not optimized. A noncentral t distri-
bution can be defined to have mean and variance parameters µ and σ, but one typically
does not optimize over the degrees of freedom. Agent-based models invariably have
settings like the number of agents or whether they travel on diagonals or the number of
other agents an agent can connect with in a period. The distinction is a little subjective,
and there are cases where one would optimize over the number of bins and such, but
that decision defines the model’s parameter space, and a different decision defines a
different parameter space and thus a different model.

There are people who are skeptical of any model with settings. There’s a certain
simplicity to a Normal distribution with its two parameters and zero settings—even
though it’s really a noncentral t distribution with the degrees of freedom (df) setting
fixed at the clearly incorrect value of df = ∞. It is clear that nobody cheated by
picking a convenient value of the settings because there are no settings to set.

This is an æsthetics argument, not really about scientific inquiry. But there is one
thing we can do: we can add uncertainty to the settings. It’s not a prior, because in to-
day’s example the likelihood function (a data-composition between a search microsim-
ulation and a Weibull distribution) has three spaces: PL, DL, and a settings space SL.
We’ll add a ‘prior’, with Dp = SL, and then observe the distribution of parameters
(∈ PL). There is no explicit prior distribution over PL but we’ll get one as output.

1

A spatial ABM of search In today’s example, we’ll have two types of agents. You
can think of them as boys and girls, or employees and employers, or just Type A and
Type B.

This is a spatial search model:

• An equal number of agents of types A and B are randomly placed on a grid.
• Agents in the middle of the grid have eight neighboring squares; agents on the

edge or a corner have fewer because they can’t go off the grid.
• Until all agents are paired up:

– If an agent is adjacent to another agent of the opposite type, they pair up,
and are taken out of the model. We record how long it took for them to find
each other.

– Remaining agents take a single step to a random unoccupied neighboring
square.

• The model output is the list of pairing times.

We can expect that initially, when there are a lot of agents wandering around, that
some agents will find each other quickly. Eventually, we’ll be down to only one A
agent and one B agent, and they will wander for a long time before pairing up.

In this case, the ratio of agent count to grid size really matters: 90 agents on a
10× 10 grid is a very different search from 90 agents on a 1, 000× 1, 000 grid.

This is the most involved simulation to date, which means that it looks like the most
typical C program to date. Also, it’s fully 90 lines [though I could play golf and cut the line
count some more, at the cost of readability]. Passing on the C trickery (the elaborate macros,
the mechanics of for loops, and all the pointer use without malloc or free), here
are some notes that might be interesting to an ABMer:

• There is a random number generator associated with every agent. RNGs tend to
not be parallelizable, but if every agent has its own, then we can still thread the
agents’ activities (though I don’t do that here).

• The agents live in two structures, set up in run_sim. One is a non-changing
array of agents. The second is a grid of pointers, with either NULL (vacant) or a
pointer to one of the agents in the unchanging list of agents. We can easily loop
through the agents via the array, and check positions and their surroundings with
the grid. When agents are paired up, mark done=true in their structs, leave
them in the array, and erase their presence on the grid.

• I have exactly as many A agents as B agents, meaning that I don’t have to make
decisions about what happens with unpaired agents. A more extensive model
would need to confront this. This also means that I only have to check for
matches and record time-to-exit among one type.

• This is all wrapped up as a first-class model, with P = ∅ and D representing the
pairing times of each agent.

At the end of this, I have a list of agent exit times. The rate at which agents exit
changes with time. This is also the story of a Weibull distribution, so it’d be interesting

2

#include <apop.h>
#include <stdbool.h>

typedef struct{
gsl rng ∗rng;
int x, y;
char type;
bool done;

} agent s;

#define gridpt(x, y) grid[(x)∗grid size + (y)]

#define xoff yoff loop(...) \
for (int xoff=−1; xoff <=1; xoff++) \

for (int yoff=−1; yoff <=1; yoff++) { \
if (a−>x + xoff >= grid size || a−>x + xoff < 0 || \

a−>y + yoff >= grid size || a−>y + yoff < 0 || (!xoff & !yoff)) \
continue; \

VA ARGS \
}

agent s ∗search for mate(agent s ∗a, agent s ∗∗grid, int grid size){
xoff yoff loop (

agent s ∗b = gridpt(a−>x+xoff, a−>y+yoff);
if (b && b−>type!=a−>type) return b;

)
return NULL;

}

void step(agent s ∗a, agent s ∗∗grid, int grid size){
int open ct = 0;
xoff yoff loop (

if (!gridpt(a−>x+xoff, a−>y+yoff)) open ct++;
)
if (!open ct) return; //landlocked, can’t move
int move = gsl rng uniform(a−>rng) ∗ open ct;
xoff yoff loop (

if (!move−−) {
gridpt(a−>x, a−>y) = NULL;
a−>x += xoff;
a−>y += yoff;
gridpt(a−>x, a−>y) = a;
return;

}
)

}

void generate agents(agent s ∗∗grid, int grid size, int pop size, agent s ∗out){
for(int i=0; i< pop size; i++){

agent s ∗a = out+i;
∗a = (agent s){.rng = apop rng alloc(apop opts.rng seed++),

.type = (i % 2) ? ’A’ : ’B’};
do{ //find a vacant spot

a−>x = gsl rng uniform(a−>rng) ∗ grid size;
a−>y = gsl rng uniform(a−>rng) ∗ grid size;

} while (gridpt(a−>x, a−>y));
gridpt(a−>x, a−>y) = a;

}
out[pop size] = (agent s){}; //empty stopper.

}

void run sim(double ∗durations, gsl rng ∗r, apop model ∗m){
int grid size = ((double∗)m−>more)[0];
int pop size = ((double∗)m−>more)[1];
int done ctr = 0, period = 1;
pop size ∗=2; //guarantee evenness.
assert(pop size <= pow(grid size,2));

agent s alist[pop size+1];
agent s ∗grid[grid size ∗ grid size];
memset(grid, 0, grid size∗grid size∗sizeof(agent s∗));
generate agents(grid, grid size, pop size, alist);

do {
for (agent s ∗a=alist; a−>rng; a++){

if (a−>done) continue;
agent s ∗b;
if (a−>type==’A’ && (b=search for mate(a, grid, grid size))){

gridpt(a−>x, a−>y) = gridpt(b−>x, b−>y) = NULL;
a−>done = b−>done = true;
durations[done ctr++] =period;

}
step(a, grid, grid size);

}
period ++;

} while (done ctr < pop size/2);
}

apop model search sim = {”A search on a grid”, .draw=run sim};

3

to see how well one fits. A Weibull has two parameters: λ follows your intuition from
Exponential or Poisson distributions: if k = 1, then λ is the mean time to exit. If k < 1,
then the time to exit is slower for those that are still present later in the game: the more
attractive (or more centrally-located) get picked up quickly, and the hard-to-match take
several λs’ time to find a match. So for this simulation, we expect that λ grows as the
grid gets more sparse, and k should be noticeably less than one.

The code below sets up a Weibull model as a first-class model. As with most models
that assume iid, the likelihood of one element can be written easily, and then the total
likelihood is the sum of the map of that function onto every element in turn. I had to
add a constraint to keep the MLE search routine from setting λ or k to zero.

The one_run function sets the settings for the simulation, makes a few thousand
draws, and estimates the parameters of a Weibull using those draws. It’s just warm-up
so we know that everything works.

The real fun is in putting a prior on the grid size and population settings, as the
fuzz function does. The output is a PMF of 100 Weibull parameters [produced using
maximum likelihood estimation based on 1,000 draws from a simulation that typically runs for hundreds or
thousands of periods—and it still runs fast enough on my cheap laptop].

Given the output draws of (λ, k), you can plot and admire them, as I did. [I’m sticking
to my policy of not displaying output, because it’s the last incentive I can give to get you to run the code
yourself.]

4

#include <apop.h>
extern apop model search sim;

double one weibull(double d, void ∗params){
double lambda = apop data get(params, 0);
double k = apop data get(params, 1);
return logl(k) − logl(lambda)

+ (k−1)∗(logl(d) − logl(lambda))
− powl(d/lambda, k);

}

static long double positive params(apop data ∗data, apop model ∗v){
return apop linear constraint(v−>parameters−>vector);

}

long double weibull ll(apop data ∗d, apop model ∗m){
return apop map sum(d, .param = m−>parameters, .fn dp=one weibull, .part=’a’);

}

apop model weibull = {”The Weibull”, .vsize=2, .log likelihood = weibull ll,
.constraint=positive params};

void one run(int grid size, int pop size){
printf(”−−−−−− A run with a %i X %i grid and %i agents:\n”, grid size, grid size,

pop size);
search sim.dsize = pop size;
double params[2];
search sim.more = params;
params[0] = grid size;
params[1] = pop size;
apop model ∗model out = apop estimate(apop model draws(&search sim, 1000), weibull

);
apop model show(model out);

}

apop model ∗fuzz(apop model sim){
int draws = 100;
gsl rng ∗r = apop rng alloc(1);
apop model ∗prior = apop model stack(

apop model set parameters(apop normal, 10, 2),
apop model set parameters(apop normal, 10, 2));

apop data ∗outdata = apop data alloc(draws, weibull.vsize);
apop prep(NULL, &sim);
double params[2];
sim.more = params;
for (int i=0; i< draws; i++){

do {
apop draw(params, r, prior);
} while (params[1]∗2 > pow(params[0], 2));
sim.dsize=params[1];
apop model ∗est = apop estimate(apop model draws(&sim, 1000), weibull);
Apop matrix row(outdata−>matrix, i, onerow);
gsl vector memcpy(onerow, est−>parameters−>vector);
apop model free(est);

}
return apop estimate(outdata, apop pmf);

}

int main(){
one run(10, 10);
one run(100, 10);
one run(10, 45);

apop model ∗fuzzed = fuzz(search sim);
apop data print(fuzzed−>data,.output file=”outdata”);

}

5

