
A crosstab and a test for independence

Ben Klemens

1 August 2013

In this commentary on the Amash amendment1 (”To end authority for the blanket
collection of records under the Patriot Act.”), Josh Tauberer disputes the claim that
”defense cash was a better predictor of a member’s vote on the Amash amendment
than party affiliation.”

Next time, we’ll try some simple regressions to more directly address the question,
but with the intent of starting simple, this time I’ll cover a relatively simple null hypoth-
esis: H0

P = the congressperson’s party affiliation and his/her vote on this amendment
are independent. To give away the not-surprising ending, this was indeed a partisan
vote.

Hypothesis HP is especially easy to work with because it is about two binary cat-
egories. The claim of independence means that then P(Republican and vote Aye) =
P(Republican) · P(vote Aye), and similarly for P(Democrat and vote Aye), P(Republican
and vote Nay), P(Democrat and vote Nay).

This claim neatly fits the form of two common tests of independence. The first is the
χ2 test. [Pronounced ‘chi squared’, so named because the test statistic theoretically has a χ2 distribution,
so named because a 1900 paper by Pearson used a Taylor expansion where the terms where named χ, χ2,
χ3, . . . , and showed that only the second term was important in the given context.] As per the name,
this test is based on a distribution that holds perfectly as N → ∞. The second test is
named the Fisher exact test [after a famous eugenicist, RA Fisher], and is based on explicitly
counting the options and their odds under a claim that vote and party affiliation are
independent.

The crosstab Simply printing the crosstab does show a clear enough correlation be-
tween vote and party affiliation that we can expect the Null will be rejected. Let’s look
at the crosstab now.

The default form for a data set is that each row is an observation, and each column
is some meaningful variable, whose units may or may match those of the variable in
the next column over. That is, the x axis of the matrix and the y-axis are entirely
asymmetric. A crosstab is about a single variable, typically a count, and the x-axis
represents one categorization (like voted Aye and voted Nay) and the y-axis another
categorization (like Democrat or Republican).

So, we’ll read in the data and generate a crosstab. I’ll print the output first (cleaned
slightly, and with a title that I just added to Apophenia’s code base):

1http://razor.occams.info/blog/2013/07/27/defense-dollars-arent-a-better-predictor-of-the-amash-vote/

1

http://razor.occams.info/blog/2013/07/27/defense-dollars-arent-a-better-predictor-of-the-amash-vote/

#include <apop.h>

int main(){
int readin status = apop text to db(”amash vote analysis.csv”, .tabname=”amash”);
Apop stopif(readin status== −1, exit(1), 0, ”Trouble reading in the data. ”

”Have you downloaded it to this directory?”);

apop query(”create table pv xtab as ”
” select party, vote, count(∗) as ct ”
” from amash ”
” group by party, vote ”);

apop data ∗xtab = apop db to crosstab(”pv xtab”, ”party”, ”vote”, ”ct”);
apop data show(xtab);
apop data show(apop test fisher exact(xtab));

}

[] Aye No
Democrat 111 83

Republican 94 134

Fisher Exact test

probability of table 0.000366298
p value 0.00125049

We reject the null that vote and party are independent with 99.874% certainty. This
is not surprising, but the fact that the crosstab looks sane and a simple test gave us the
simple result we were expecting gives us confidence that the data is what it says it is
and that we haven’t (yet) overlooked any blatant flaws.

Here’s the program to generate this output, and some subsequent commentary. As
usual, this could be reduced to two lines of code, but fewer lines of code typically
means less readable and less extensible. Also, as usual, most of the work is in getting
the data in the right place. Once it’s in the right form, the modeling and testing is a line
or two.

How it works:

• Mr Tauberer posted the data at this location2 (CSV file hotlinked to his site),
based on a query from his govtrack.org3 website. Save it to the directory where
you’re working (on Linux, Mac, or Cygwin, wget will do this from the com-
mand line).

• apop_text_to_db does what it says. We didn’t open an on-disk database us-
ing apop_db_open, so this will create a table named amash in an in-memory

2http://razor.occams.info/pubdocs/amash_vote_analysis.csv
3govtrack.org

2

http://razor.occams.info/pubdocs/amash_vote_analysis.csv
govtrack.org

database.
• That call is followed by an Apop_stopif macro, which is intended to take

action on errors. I’m not nearly paranoid enough to wrap every function call in
such a wrapper, but reading in a text file is one of those things that fails with
great frequency.

• SQL is the right place to do data shunting. Here, we create a spare table with a
count of how many people are in each party/vote combination. The documen-
tation for apop_db_to_crosstab suggests some ways to avoid making this
spare table, but doing so makes clear what’s going on. The spare table isn’t quite
a crosstab yet; you could view it with, e.g.

apop data print(apop query to text(”select ∗ from pv xtab”));

and you’ll see that each row is an observation listing party, vote, count, so we
need one more step to turn it into an XY-symmetric sort of table.

• apop_db_to_crosstab does this conversion. We save the result to xtab.
• Finally, run apop_test_fisher_exact on the resulting table.

Are defense contributions independent of vote? Of course not. The program is
very similar; merging this script and the above is left as an exercise for the reader.

Following the Tauberer analysis, we split contributions down the middle, between
high and low contributions, which brings us back to the binary case.

Once again, we’ll use SQL to do the data prep, which in this case is a little awkward
because we need the median, which is not a built-in SQL function. But it’s easy to
calculate: if you select a sorted list of contributions, but limit its length to half the total
count of rows, then the max of that sorted list is the median.

By the way, the Mehta & Patel code (the core of the Fisher Exact test; see below)
works for an N ×M matrix for any N , M , not just 2 × 2. The median-calculating
method could be used, probably with a C-side for loop, to split the congresspack into
thirds or quartiles.

In code, the median is first calculated and saved to a C-side scalar with apop_query_to_float,
and then the next query uses a printf-style substitution to make use of that number.

After that calculation, the rest of the program is the same story.
The output also looks pretty similar:

[] Aye No
0 129 85
1 76 132

Fisher Exact test

probability of table 4.96527e-07
p value 1.09589e-06

Yes, the p-value is 1e-6 instead of 1e-3, but comparing p-values across tests is
basically meaningless.

3

#include <apop.h>

int main(){
int readin status = apop text to db(”amash vote analysis.csv”, .tabname=”amash”);
Apop stopif(readin status== −1, exit(1), 0, ”Trouble reading in the data. ”

”Have you downloaded it to this directory?”);

double median contrib = apop query to float(”select max(contribs) from ”
” (select contribs from amash order by contribs ”
” limit (select count(∗)/2 from amash))”);

apop query(”create table pv xtab as ”
” select vote, (contribs+0.0 > %g) as hi money, count(∗) as ct ”
” from amash ”
” group by vote, hi money ”, median contrib);

apop data ∗xtab = apop db to crosstab(”pv xtab”, ”hi money”, ”vote”, ”ct”);
apop data show(xtab);
apop data show(apop test fisher exact(xtab));

}

Next time, a logit and a probit, more directly addressing the original question re-
garding the Amash vote.

Scaling the test I’ll conclude with a digression about the Fisher Exact test itself.
The code to evaluate the FExact test hasn’t really changed: as far as I can tell,

everybody uses the same code written in 1993 by Cyrus R. Mehta and Nitin R. Patel4,
perhaps modified by running it through an automated FORTRAN-to-C converter. I
have received multiple emails from people who wanted to test the limits and try very
large integers, like N = 100, 000. [Evidently, R throws away the workspace overflow errors that
Mehta & Patel’s algorithm emits and returns in-expected-range but garbage values, which gave these readers
false hope that this should work without modification.]

But both the Fisher Exact test and the χ2 test are very likely to reject the claim of
no correlation for real-world data with N in the thousands. For a one-dimensional bell
curve, the standard error σ ∝ 1/

√
N , so if N = 10, 000, then σ ∝ µ/100—if your

observed mean µobs is more than about 3µobs/100 away from µobs, then a typical one-
dimensional hypothesis test will reject the claim that µobs = µ. That intuition carries
over to the χ2 and Fisher Exact tests: for real-world data with N in the thousands,
don’t even bother.

But don’t take my word for it, here’s some code, which fills a 2 × 2 matrix with a
few values, and then re-fills it with the same values multiplied by 100. In eight days,
I’ll show how to simplify even this:

In both cases, these are independent except for 2.4% of the observations—shift
the first column to 10 and 25 (or 1100 and 2500) and the row and column are fully

4https://dl.acm.org/citation.cfm?doid=6497.214326

4

https://dl.acm.org/citation.cfm?doid=6497.214326

#include <apop.h>

int main(){
apop data ∗d = apop data alloc(2,2);
apop data fill(d,

11, 14,
24, 35);

apop data show(apop test fisher exact(d));

apop data fill(d,
1100, 1400,
2400, 3500);

printf(”\n Scaled 100X:\n”);
apop data show(apop test fisher exact(d));

}

independent. Here’s the output, showing how the scaling affects the p-value and the
probability the table could happen at random given the independence assumption:

Fisher Exact test

probability of table 0.182861
p value 0.812263

Scaled X100:
Fisher Exact test

probability of table 0.00036128
p value 0.00498963

5

