
Another C macro trick: parenthesized arguments

Ben Klemens

9 August

I just realized another thing about C macros. On the one hand, I feel bad that I
didn’t realize this when I was writing 21st Century C1, a book half-filled with tips like
these; on the other hand, it feels criminal that of the dozens of textbooks I read about
C before writing mine, none of them mentioned this.

Rest assured that this will be included in the next revision of 21st Century C. Part
of the joy of having a textbook here in the modern day, especially with a tech-oriented
publisher, is that we can send a new camera-ready PDF to the printer at whim, and it’ll
be a printed book within a few weeks. Every error anybody on the Internet said was in
the book has at this point been addressed, which is pretty nice.

Parens in macros First, if you’re not familiar with variadic macros—because there
are still C textbooks sold today that fail to mention them—have a look at either this
earlier entry (entry #076) or the discussion in 21st Century C.

The problem is when you want to merge two variadic macros or functions. For
example, say that you’ve decided that your program should emit errors in two ways:
print a more human-friendly message to screen and print a machine-readable error
code to a log (I’ll just use stderr). It would be nice to have one function that takes in
printf-style arguments to both output functions, but then how would the compiler
know when one set of arguments ends and the next begins?

We can group arguments the way we always do: parens. From both the C99 and
C11 standards:

§6.10.3(11): The individual arguments within the list are separated by
comma preprocessing tokens, but comma preprocessing tokens between
matching inner parentheses do not separate arguments.

And thus, here is a workable example to print two error messages at once:

#define fileprintf(...) fprintf(stderr, VA ARGS)
#define doubleprintf(human, machine) do {printf human; fileprintf machine;} while(0)

//usage:
if (x < 0) doubleprintf((”x is less than zero (value: %g)\n”, x), (”NEGVAL: x=%g\n”, x))

The macro will expand to:

1http://tinyurl.com/C-for-moderns

1

http://tinyurl.com/C-for-moderns

do {printf (”x is less than zero (value: %g)\n”, x); fileprintf (”NEGVAL: x=%g\n”, x);} while
(0);

I added that fileprintfmacro to provide consistency across the two statements.
Without it, you’d need the human printf arguments in parens and the log printf argu-
ments not in parens:

#define doubleprintf(human, ...) do {printf human; fprintf (stderr, VA ARGS);} while(0)

//and so:
if (x < 0) doubleprintf((”x is less than zero (value: %g)\n”, x), ”NEGVAL: x=%g\n”, x)

I don’t like this from the user interface (UI) perspective, because symmetric things
should look symmetric.

What if users forget the parens entirely? It won’t compile: there isn’t much that
you can put after printf besides an open paren that won’t give you a cryptic error
message. On the one hand, you get a cryptic error message; on the other, there’s no
way to accidentally forget the parens and ship wrong code into production.

Variadic macros were a really nice addition to the language, and are significantly
safer than the raw variadic function form, which is so error-prone that it treads in
security-flaw territory. Throw in a few extra parens, and you have something that really
extends the utility of the form, even if it isn’t the traditional C UI.

Example two: allocate and fill a data set The apop_data_allocmacro+function
takes in zero through three arguments, depending on whether you want a blank data set,
a vector, a matrix, or a vector-matrix pair. The apop_data_fill macro+function
takes in enough arguments to fill a matrix. I get the number of arguments from the
dimensions listed in the already-allocated matrix.

Typical usage:

apop data ∗d = apop data alloc(2,2);
apop data fill(d,

1, 0,
0, 1);

//or more briefly:

apop data ∗d = apop data fill(apop data alloc(2,2),
1, 0,
0, 1);

It would be nice to have a macro that provides dimensions for the alloc function
and data for the fill function, and we can do so using the paren trick:

#define alloc fill(dims, ...) apop data fill(apop data alloc dims, VA ARGS);

apop data ∗d = alloc fill((2,2),
1, 0,
0, 1);

Given that it is not uncommon to have little fixed-contents vectors and matrices all
over a program, having a simplified UI for creating them can really improve the flow.

2

#include <gsl/gsl matrix.h>
#include <math.h>
#include <apop.h> //just for apop matrix print

#define make a list(...) (double[]){ VA ARGS , NAN}

#define matrix cross(list1, list2) matrix cross base(make a list list1, make a list list2)

gsl matrix ∗matrix cross base(double ∗list1, double ∗list2){
int count1 = 0, count2 = 0;
while(!isnan(list1[count1])) count1++;
while(!isnan(list2[count2])) count2++;
if (!count1 || !count2) return NULL;

gsl matrix ∗out = gsl matrix alloc(count1, count2);
for (int i=0; i< count1; i++)

for (int j=0; j< count2; j++)
gsl matrix set(out, i, j, list1[i]∗list2[j]);

return out;
}

int main(){
gsl matrix ∗m = matrix cross((1,2,4,8), (5, 11, 15));
apop matrix print(m);

printf(”\n\n”);
apop matrix print(matrix cross((17, 19, 23), (1,2,3,5,7,11,13)));

//create and fill a column vector
printf(”\n\n”);
apop matrix print(matrix cross((1,2,3,5,7,11,13), (1)));

}

Example 3: a times table This final example will generate a product table: given
two lists R and C, each cell (i, j) will hold the product Ri · Cj .

Next time, more about the apop_data struct, and a whole lot of data manipulation
functions.

3

