The data set: views of a C structure

Ben Klemens

13 August

The Apophenia library is built on two structures, one representing data and one representing
models. I've talked a lot about the apop_model struct, because it’s novel and facilitates novel
types of analysis. Conversely, the apop_data struct represents numeric and text observations,
which is not especially innovative. Nonetheless, most of what we do is simple data manipulation,
not modeling per se, so having a good structure for data matters.

The next several entries offer notes and how-to on the apop_data structure. I will assume that
you’re interested in the questions about what roadblocks come up in building a structure for data,
and may or may not be interested in using Apophenia itself.

Here’s the definition of the struct. It has a lot of parts. I’ll discuss the rationale and use of all of
them over the next several entries.

typedef struct apop_data{
gsl_vector xvector;
gsl_matrix *matrix;
apop_name *names;
char *xxtext;
size_t textsize[2];
gsl_vector xweights;
struct apop_data xmore;
char error;

} apop_data;

In this episode: the matrix.

Structuring your data Your data is held in memory somewhere, in some format. You would write
it down on paper as a table, with observations along the rows and each column representing some
variable (maybe observation ID, height, weight, gender, race. .. ).

A computer doesn’t have the luxury of a two-dimensional page. Data addresses are linear, so
the machine will have to represent your 2-D structure in a linear form. From this simple problem
statement comes a host of little details.

For example, we might take a 3 x 4 grid and turn it into the sequence

(0,0) (0, 1) (0, 2) (0, 3) (1,0) (1, 1) (1, 2) (1, 3) (2.0) (2, 1) (2,2) (2, 3)

Already, I’ve made a few choices. I'm used to C, so I've used offset numbering, where the index
represents how far you are from the first element (or row or column). I'm using row-major ordering,
meaning that the primary clumps are rows, and any one column of data is split up. Row-major is
the C custom, but I find myself applying functions like the log likelihood on a per-observation basis
more often than I’m operating on a column in isolation. Not that it really matters much.



A set of elements is regularly spaced if the distance between item 7 and item ¢ + 1 is always
fixed. Thus, the distance from element (0, 1) to the next in the row, (0, 2), is the same distance
between any other row-neighbors, such as (1, 2) and (1, 3). The columns are also regularly spaced:
the distance from (0, 1) to (1, 1) is four steps—the size of one row—and this is the same for any pair
of column-neighbors. You’ll find authors who refer to this jump as the stride of the matrix.

A fixed-width jump is among the fastest operations a computer can do. Your computer hardware
is optimized to deal with it: after you fetch addresses 600, 602, and 604, a modern processor will
pick up the pattern and preemptively fetch what’s at 606 before your program even asks for it. In
typical cases, it doesn’t matter whether the distance is one unit as when traversing a row or a larger
stride as when traversing a column.

Rare is the data processing algorithm that doesn’t have to fetch every element of a matrix, so
these little speedups on fetching one record scale in proportion to the size of the data set.

Other systems do it differently, throwing out some form of regular spacing in exchange for some
other benefit. R data frames bundle by columns. Each column may have a different type, but a single
column is (typically) a regularly-spaced vector of data. SAS and databases bundle by observations
(rows). Each observation is a sequential blob of data of different types. In C-type languages, we
could implement this via a struct representing one observation and then building an array or tree of
such structs.

The GNU Scientific Library implements matrices in the form I described above, with a data
segment that is a simple row-major list of elements and some metadata indicating the row count,
column count, starting point, and stride.

Views Say that we have a matrix with this metadata:

data= a pointer to a list of elements somewhere in memory.
starting point= (0, 0) in the data set

rows =3

cols =4

stride= 4

If you need to find element (2, 3), then this is enough information that we can start at (0, 0),
then step forward 2*stride + 3 units. If you try to step more than three rows or four columns, then
the system knows to throw an error instead of overreaching. So this metadata is sufficient to turn a
pointer to a sequence of elements into a real matrix.

Now we want the column vector that is column 1 in the data. You could build that struct by
changing only the metadata:

data= the same pointer to a list of elements.
starting point= (0, 1)

rows =3

cols=1

stride= 4

Notice how the stride is the size of a row in the original data set, even though a ‘row’ in a column
vector is one element wide. But the math is the same: the element at position (2, 0) in this column
vector is at position (starting point) + 2*stride + 0.



I leave as a simple exercise to the reader how to build any other regular shape, like a two-by-two
square starting at (1,1), or only row 3.

So you get views of columns, rows, or other regular shapes by simply annotating the data ac-
cordingly. What you don’t get are irregularly-spaced elements. If you want columns 1, 2, 4, and 8§,
then you’ll need more metadata than we have here; the typical solution is at this point to give up on
the elegance of rewriting the metadata for the same raw data and start copying columns into a new
structure. If you’ve been reading along to this point, you can see how this has shaped the recom-
mendation that users build data sets in SQL and then write them once in the correct form to a data
set, because options for subsetting after writing to a regular matrix aren’t as nice (but Apophenia
does provide several, all of which involve data copying).

By the way, it looks like somebody posted some slides about how this is also how NumPy arrays
WOr'

Examples This is all about vectors and matrices from the GNU Scientific Library, but I'm going
to use Apophenia, for exactly the reason I wrote Apophenia: it provides a nicer UI for the GSL.

For example, the raw GSL provides several functions to slice a GSL matrixﬂ to pull a column or
rouﬂ or subset a GSL Vectoﬂ Apophenia has some convenient wrapper macros for many of these
functions. E.g., to get the covariance of columns 2 and 3:

gsl_matrix *m = [read in data here];
Apop-matrix_col(m, 2, v1);
Apop_matrix_col(m, 3, v2);
apop-vector_cov(vl, v2);

After being declared within the macro, v1 and v2 correctly behave as vectors. They are pointers
to structs on the stack, so they disappear at the end of scope, and they are metadata re-wrappings of
the same data as the original, so changes in the vector view affect the base data.

Here’s a full example. This time, the key interesting output will be a principal component analy-
sis of the Amash vote data which first appeared several episodes ago (entry #158). Roughly, a PCA
reveals in which column the greatest variation in the data lies. If there’s a strong correlation between
two columns, then that variation may be along a linear combination of those columns. The example
uses Apop_col_v (like Apop_matrix_col but takes in an Apop_data set) to get only the
first eigenvector from the matrix of eigenvectors.

The query describes what the three columns of data are. I set Aye=0 for consistency with prior
analyses; vote=1 indicates a pro-NSA wiretap leaning. I took the log of contributions, for reasons
that will become evident below. The Logit analysis from a few episodes ago is also very different
when we replace contribs with log (contribs+10). Instead of adding 10 to dodge log(0)
errors, you could also insert a where contribs > O clause to the query.

The program runs apop_data_correlation, then apop_matrix_pca, which puts the
eigenvalues in the output data set’s vector, and the eigenvectors in the columns of the output data
set’s matrix.

Ihttp://axialcorps.com/2013/08/08/numpy-is—core-lessons-from-python-for-data-science/
Zhttps://www.gnu.org/software/gsl/manual/html_node/Matrix-views.html
3https://www.gnu.org/software/gsl/manual/html_node/Creating-row-and-column-views
html#Creating-row-and-column-views
*https://www.gnu.org/software/gsl/manual/html_node/Vector-views.html#
Vector-views


http://axialcorps.com/2013/08/08/numpy-is-core-lessons-from-python-for-data-science/
https://www.gnu.org/software/gsl/manual/html_node/Matrix-views.html
https://www.gnu.org/software/gsl/manual/html_node/Creating-row-and-column-views.html#Creating-row-and-column-views
https://www.gnu.org/software/gsl/manual/html_node/Creating-row-and-column-views.html#Creating-row-and-column-views
https://www.gnu.org/software/gsl/manual/html_node/Vector-views.html#Vector-views
https://www.gnu.org/software/gsl/manual/html_node/Vector-views.html#Vector-views

#include <apop.h>

int main(){
apop-text_to_db(’amash_vote_analysis.csv”, .tabname="amash”);
apop_data xd = apop_query_to_data(”’select ”
“case when vote="Aye’ then O else 1 end as vote, ”
”ideology, log(contribs+10) from amash”);

apop-data_show(apop-data_correlation(d));
apop_data xeigens = apop_matrix_pca(d— >matrix);

printf(”\nEigenvalues:\n”);
apop_vector_print(eigens— >vector);

printf(”"\nPrincipal eigenvector:\n");
Apop_col_v(eigens, 0, principal);
apop-vector_print(principal);

Even with the where contribs>0 clause, the first eigenvector is the lion’s share of the
variation in the data, and that eigenvector consists mostly of the 1og (contribs) column. As
you can imagine, without logs contributions represent ~100.00% of the variation in the data.

If you run this, you’ll see the immense benefit of fast addressing: even on slow hardware, this
runs in a fraction of a second, whereas calculating the PCA by hand can take literally hours.



