
Mapping functions

Ben Klemens

21 August 2013

This is another note on useful things Apophenia does; today’s entry is about apply-
ing a function to every element of a matrix, vector, or data set.

This form helps in thinking about program flow, and makes for clearer writing. It
is also a good hook for threading, and for some situations gives you threaded programs
almost for free. This is the map/reduce paradigm: get the log likelihood of every
observation separately, perhaps on different cores, then sum up the likelihoods to get
the total log likelihood for the data set.

In some interpreted languages there’s some sort of nontrivial difference between
a simple for loop over all the rows in a data set and a vectorized function, perhaps
because the interpreter has to drop down to C on every line of the for loop, but con-
solidates those calls via the vectorizer. In C, there is exactly zero overhead to calling C
functions, so having a function-applying function is thus largely a convenience to help
with writing readable code and to make threading easier.

You would first write a callback function, a function whose sole intent is to be sent
to the map or apply function; for finding log likelihood of a data set, this would be the
one-observation log likelihood. Then the mapping function has the task of applying
the function to every element of the data set.

Here’s a simple example, which fills a 5 × 5 matrix with random draws by calling
the draw callback for every element, then produces a new matrix that takes the log
of those elements by applying the ln callback to every element. The apply function
changes the input matrix in place; the map function uses the callback to map the input
matrix to a new output matrix.

#include <apop.h>

gsl rng ∗r;

void draw(double ∗in){∗in = gsl rng uniform(r);}
double ln(double in){return log(in);}

int main(){
r = apop rng alloc(123);
apop data ∗d = apop data alloc(5, 5);
apop matrix apply all(d−>matrix, draw);
gsl matrix ∗log d = apop matrix map all(d−>matrix, ln);
apop data show(d);
printf(”\n”);

1



apop matrix show(log d);
}

This was my first draft of a mapping setup, with several functions (which you can
look at in the appropriate segments of the Apophenia documentation1). Notice how the
random number generator gets passed in to the draw function: it’s just global to the
file. This is universally deemed to be a lazy way to do it, but I never removed it from
the Apophenia interface because I still use in my scripts all the time. There isn’t really
a ‘global scope’ in C, just scope from one point to the end of the file, and sometimes
that’s not fatal to readability or maintainability. However, if the global variable isn’t
read-only (and the RNG isn’t), then you can’t use this for threading.

A replication example The next extended example is taken from the blog of Nathan
Lemoine2, who used a replication experiment as a timing test between R and Python.

[I’m out of the timing-test business, because I’ve come to realize that the people who use slow platforms
are the people who don’t care about speed and evidently never face situations where speed matters. The C
code here is still faster than the R code a commenter on that page offered using lm.fit; I imagine that it took
me about as long to write the sample code here as it would take an R partisan to write the sped-up R version;
and it’s up to you to decide whether C fits into your workflow. ]

In the setup, create a fake data set, where the first dependent column is an index
and the second is a draw from N (0, 100), and the dependent variable is 2*index + the
draw. Then run a regression, producing an expected value of the dependent variable and
a residual. Then for the 10,000 replications, build a fake dependent variable by adding
the shuffled-up residuals to the same expected values, and re-run the regression. Mark
down the 10,000 coefficients on the second term. Report the mean of those coefficients.
I’ll have more notes on the use of the mapping functions below, and as usual, it helps
to read the bottom function first.

• In the non-lazy C tradition, parameters get passed in to the callback via a single
void* pointer. The textbooks on C programming strongly advise that you gen-
erate an ad hoc struct for passing in parameters, which I know because I wrote
one of those textbooks. Also, because C doesn’t allow nested functions (though
it’s a GNU extension and Apple relies heavily on it), the function has to be out-
side of the function where the apop_map call is placed. Other languages bring
the callback and the calling function closer together.

• You can write a callback that takes in an apop_data set, in which case the call-
back will receive a single-row view of the main data set. Therefore, the row in-
dex in the callback is always zero. Because the inputs to apop_data_get and
_set and _ptr all default to zero, that means you can just omit the .row=0
part.

• The apop_map and apop_map_sum functions use the named-input mecha-
nism to determine what sort of mapping you want to do: the name specifies
whether the callback takes in a double or a gsl_vector, a void * param-
eter, the index of the row being worked on. See the documentation for details,

1http://apophenia.info/group__mapply.html
2http://climateecology.wordpress.com/2013/08/19/r-vs-python-speed-comparison-for-bootstrapping/

2

http://apophenia.info/group__mapply.html
http://climateecology.wordpress.com/2013/08/19/r-vs-python-speed-comparison-for-bootstrapping/


#include <gsl/gsl permute vector.h>
#include <apop.h>

typedef struct {
gsl rng ∗r;
apop model ∗model;

} rowset s;

double set a row(apop data ∗in, void ∗in struct, int index){
rowset s ∗s = in struct;
double draw;
apop draw(&draw, s−>r, s−>model);
apop data fill(in, 2∗index + draw, index, draw);
return 0;

}

typedef struct {
apop data ∗data;
gsl vector ∗resid, ∗yhat;

} rep s;

double one replication(apop data ∗ignore, void ∗in, int index){
gsl rng ∗r = apop rng alloc(index);
rep s ∗rs = in;
gsl permutation ∗ p = gsl permutation alloc (rs−>resid−>size);
gsl permutation init(p);
gsl ran shuffle(r, p−>data, rs−>resid−>size, sizeof(size t));

//Can’t write to the input, so build a new one.
//point to the original matrix of independents,
//but generate a new dependent var in alt data−>vector.
apop data ∗alt data = apop data alloc();
alt data−>matrix = rs−>data−>matrix;
alt data−>vector = apop vector copy(rs−>resid);
gsl permute vector(p, alt data−>vector);
gsl permutation free(p);
gsl vector add(alt data−>vector, rs−>yhat);

apop model ∗mb = apop estimate(alt data, apop ols);
double out = apop data get(mb−>parameters, .row=1, .col=−1);

//Clean up. Even at this scale, this is optional.
alt data−>matrix = NULL;
apop data free(alt data);
apop model free(mb);
gsl rng free(r);
return out;

}

int main(){
apop opts.thread count = 4;
gsl rng ∗r = apop rng alloc(123);
apop data ∗d = apop data alloc(101, 3);
apop map(d, .fn rpi=set a row,

.param=&((rowset s){.model=apop model set parameters(apop normal, 0,
10), .r=r}));

apop model ∗m = apop estimate(d, apop ols);
apop model show(m);

apop data ∗rpage = apop data get page(m−>info, ”<Predicted>”);
Apop col t(rpage, ”Predicted”, yhat)
Apop col t(rpage, ”Residual”, resid)

int runs = 10000;
Apop model add group(&apop ols, apop parts wanted);
apop data ∗out = apop data alloc(runs);
apop map(out, .fn rpi=one replication, .inplace=’y’,

.param = &((rep s){.data=d, .yhat=yhat, .resid=resid}));

printf(”mean replicated coefficient = %g\n”, apop mean(out−>vector));
}

3



but .fn_rpi means the function takes in an apop_data row, a void* pa-
rameter, and the index. This use of named inputs makes the documentation look
daunting, but seems to work OK in practice, and gives us type-checking.

• The parameter structs can be built in place, using compound literals and des-
ignated initializers. I also count this as textbook stuff, for the same reason as
above.

• The original author draws without replacement from the residuals. I wouldn’t
count this as a bootstrap, which is done with replacement, but nomenclature
aside, I used the GSL’s permutation struct to shuffle the vector of residuals. That
adds four lines of code. Does anybody feel a strong need for an apop_data_shuffle
function?

• The one_replication function initializes a new random number genera-
tor and permutation struct for every row of data. In fact, all of the inputs are
treated as read-only, and only the internal elements and the final return value are
changed. It is thus thread-safe.

• Apophenia’s threading functions look to the apop_opts.thread_count
variable for the number of threads they should use. They use POSIX threads (aka
pthreads), and just split the full list of elements into evenly-sized chunks, and
each thread runs a for loop over its chunk. That is, all you have to do to thread
code written using apop_map and apop_map_sum is to set apop_opts.thread_count.

• This is demo code; I probably wouldn’t thread this in practice. There is a small
overhead to threading, and you can see that things that aren’t read-only need to
be re-produced in every thread. Also, the unthreaded version of the demo I wrote
before this one is several lines shorter. I’m open to suggestions on how we could
improve the mapping and threading interface as described here.

4


