
Dealing with arrays of text

Ben Klemens

30 August 2013

Dealing with text in C is annoying for several reasons, primary among them the
fact that changing a string often involves a memory reallocation. In 21st Century C, I
talk about the lovely asprintf function; this was one of the most popular bits of the
book; e.g., see the summary on this blog1.

Here, I consider the next step: an array of text, which we get when we have text
data in a data set. This entry will describe where I wound up in trying to design a setup
for dealing with grids of text data.

Last time (entry #166), I talked about the straightforward gsl_vector and gsl_matrix
functions, and the interface functions in Apophenia that smooth over some of the de-
tails. Similarly, the text element of the apop_data set is in no way special—it is
declared as char ***text—but with the right interface functions, we can use this
unremarkable structure reasonably gracefully.

• Declare with apop_text_alloc. This generates the pointer-to-pointer-to-
pointer grid for you, which is already saving a lot of pain. This is really a realloc
function, so if you change the size to larger or smaller, there’s no memory leak.
You can only produce a rectangular array of elements, though having a long list
of pointers-to-NULL [As Apop. v1 will have] is rarely a serious problem.

• Add text with apop_text_add. This is really a realloc function, so if there’s
already text in that slot, there’s no memory leak.

• Add lots of static text at once with apop_text_fill.
• Free the whole thing with apop_text_free, which you’ll never use anyway,

because you’ll use apop_data_free to free the entire data set at once.

OK, we’re done with memory management of strings in C: just use those three
functions, and it’s all taken care of. Again, other systems do it in other ways, such as
generating a struct that includes string metadata, thus forcing users to always use the
accessor methods of the object.

Accessing the elements of a 2D grid of structs is also straightforward, once you
have the rules down. Given a data set declared via apop_data *td = apop_text_alloc(NULL, 3, 3):

• td->textsize[0] is the row count; td->textsize[1] is the column
count.

1http://www.power-quant.com/?q=node/80

1

http://www.power-quant.com/?q=node/80

• Element (i, j) is td->text[i][j].

With the matrices and vectors, I was concerned with having a setup that gracefully
dealt with matrices, vectors, and scalars. Why should I always have to specify two
indices when I sometimes only need one or zero? We can do a similar thing using the
rule that *x and x[0] are equivalent in C—you can think of one as syntactic sugar for
the other [see §6.5.2.1(2) of the C standard].

• The oft-used row count is *td->textsize.
• If you know you have only a single column of text, get item i via *td->text[i].

If you know you have a single text element, it is **td->text.

So there’s the string-handling system via the apop_data struct. Write using the
allocate and add functions, free with the free function, and read directly from the text
and textsize elements.

Some bonus functions Transpose via apop_data_transpose, which transposes
both the matrix and text elements of the apop_data set that gets input. This is espe-
cially useful when you have a function that needs a list of strings, because the column
of strings above was really a list of pointers-to-one-string, but each row of the text array
is one pointer-to-strings as desired.

It might be nice to have a few view functions that view columns or subgrids. One
could implement them the way that vector views were implemented in the GSL, by
setting up a list of starting points and changing the textsizes accordingly. [That’s a
hint, for anybody who’s interested in contributing. It’s nontrivial, though.]

Use apop_text_paste to merge a grid of strings into a single string. This is
an emulation of R’s paste function, modified to more naturally handle a 2-D grid
of text. With creative separators, you can produce all sorts of things with this. E.g.,
the documentation for the function prints a text grid as an HTML table, by putting the
appropriate HTML tags between elements, between rows, and at the head and tail.

Conversely, if you need to split a string into parts, use apop_regex. Using parens
in a regular expression tells the regex parser to return those parts of the regex to the
user. The POSIX-standard regex parser will return a pointer to the end of the matched
string, and we can pick up where that leaves off to parse again. The output from
apop_regex will have columns of text corresponding to the parens in your regex,
and columns corresponding to repeated application.

Here’s an example that takes in a regex and a string, then parses it down and prints
the results in a table. This would be pulling teeth in raw C, but with the right interface
functions writing this in C is much like writing it in a pointer-free scripting language.

I wrote this as a shell script. Cut and paste it to your command line to have gcc
produce a.out and run it as per the examples given.

2

gcc −xc − ‘pkg−config −−libs −−cflags apophenia‘ −g −Wall −−std=gnu99 −O3 << ”
−−−−”

#include <apop.h>

int main(int argc, char ∗∗argv){
Apop stopif(argc == 2, return 1, 0, ”Give two arguments: a regex and a string.”);
apop data ∗txt;
int returnval = apop regex(argv[2], argv[1], &txt);
Apop stopif(!returnval, return 1, 0, ”No matches found.”);
Apop stopif(returnval==−1, return 2, 0, ”Bad regex.”);
printf(”%s”, apop text paste(txt, .before=” [”, .between cols=”] [”, .between=”]\n [”, .

after=”]\n”));
}
−−−−

a.out ”([[:alpha:]]+), ∗([−[:digit:].]+)” ”{pants, 23} {plants,−14} {dirigibles, 12.81}”
echo −−−−−
a.out ”((<[ˆ<]∗>)([ˆ<]∗)</[ˆ>]∗>)” ”pants blazers”
echo −−−−−
a.out ”([[:alnum:].])” ” hello. ”

3

