
Interrater agreement

Ben Klemens

22 September 2013

[This and the next entry are blog-level discussions of this Journal of Official Statistics paper1.]
I first met Cohen’s Kappa maybe three years ago. I did a joint project with a

friendly coworker who had spent decades dealing with the sort of data that requires such
measures. After some amused discussion of our different paths and how I could spend
years dealing with data and never meet it, yet she had to use agreement measures on
every project, she apologized. Cohen’s Kappa and the many related measures (Fleiss’s
Kappa, Scott’s Pi, Krippendorff’s Alpha, . . .) don’t make a lot of sense, she told me,
and don’t seem to have much theoretical basis, but it’s what everybody uses.

The basic problem: you have two sequences of observations about the same data.
The typical situation is that there is non-categorical data, like free-response questions
on a survey or a set of chest X-rays, and two or more raters independently decide into
which category each observation falls, like a check-box summary or a diagnosis. We’d
like to know how often the raters are in agreement.

If there are two categories, two raters flipping coins would agree 50% of the time.
Given two categories that have an expected 90-10 split, we expect raters to be in agree-
ment 82% of the time. Given 100 equiprobable categories, the expected agreement
entirely at random is 1%. So it seems inequitable to compare raw categories, and it
seems we should have some sort of ‘complexity adjustment’ to the raw observed rate
of agreement to take into account how much room there is for agreement over the
at-random case.

From here, complications ensue. Below, I’ll discuss the difference in baseline cal-
culations between Cohen’s Kappa and Scott’s Pi (and define both at the same time). Or
what if the categories are ordered; should a near-miss count for something? What if
some categories are really hard to identify and others are very easy to identify? And,
for that matter, why are we taking two people drawing values at random as a baseline
at all?

That’s the state of the literature: everybody has a different baseline concept of
randomness, which implies that everybody has a different measure of the distance to
randomness. For example, this paper2 (PDF), sent to me by Dr MH of SF, CA, charac-
terizes the entire interrater agreement literature as a big mess, with too many answers
to the same question.

1http://www.jos.nu/Articles/abstract.asp?article=283395
2http://business.illinois.edu/shavitt/BA_531/Grayson-week14.pdf

1

http://www.jos.nu/Articles/abstract.asp?article=283395
http://business.illinois.edu/shavitt/BA_531/Grayson-week14.pdf

The math The calculations for these things all begin by generating what I’ve been
referring to as a crosstab, but many in this literature call the confusion matrix, (from
the Latin prefix con-, meaning with, melded with the root word fusion). Cell (1,1) is
the percent of times both raters chose category one, (1, 2) is the percent of times the
row rater chose 1 and the column rater chose 2, and so on.

I’ll be assuming a normalized confusion matrix from here on in, where the grand
total of all cells is exactly one. That means that having large or small N is irrelevant to
the measurements.

The basic formula for both Cohen’s Kappa and Scott’s Pi is

Po − Pe

1− Pe
.

Here, Po is the observed percent agreement—the sum of the main diagonal of the
confusion matrix. Cohen finds the expected percent agreement for category one by
multiplying the percent of times the row rater chose category one by the percent of
times the column rater chose category one (i.e., the total weight in row one times the
total weight in column one). Then Pe is the sum of the percent agreement for every
category. For Scott, we find the agreement for category one by finding the percent of
all classifications (both for row and column) that went to category one, and squaring
that.

That is, for Cohen, the row rater and column rater are distinct random number gen-
erators, with distinct odds of picking category one, and the at-random odds of agree-
ment is the product of the two. For Scott, the row rater and column rater are both
instances of a generic rater, and our best estimate of the generic rater’s odds of pick-
ing category one is from pooling both row and column categorizations together; the
at-random odds of agreement is then the square of the odds the generic rater picks a
category.

So we already have two plausible models of the at-random null hypothesis. I have
yet to see an argument advocating for one over the other that did not reduce to this one
just seems more plausible to me than the other one. Within the two, the literature I have
read seems to have a preference for Cohen’s Kappa. I suspect this is because Cohen’s
Kappa is always larger than Scott’s Pi, so you look like you have better raters using it.
[Proving this is left as an exercise for the reader.]

The intuition for both measures largely works out: if there is full agreement, then
Po = 1 and both measures are (1−Pe)/(1−Pe) = 1 (given raters that used more than
one category). If agreement at random is more likely, so Pe is larger, then the same Po

produces a smaller measure, so we are successfully complexity-adjusting Po. If there
is worse-than-random agreement, then these measures are negative, which is a little
awkward; the usual advice in the literature (and I agree) is that if you get a negative
Kappa, then your protocol is seriously broken and you should focus on why your raters
can’t agree rather than fretting over the exact value of a statistic.

The sample code Below is code calculating both Scott’s Pi and Cohen’s Kappa. I’ll
use the Amash amendment data again, which I first used and described in this earlier
entry (entry #158). Here, the ‘raters’ are (1) votes cast on the amendment, and (2)

2

the party affiliation of the voter. A claim that this was a party vote is a claim that the
agreement between these two ratings should be high.

When you run this, you’ll see that the rate of agreement between the first and second
rating schemes is not all that much further from the coin-flip odds of 50%, so all of the
rating schemes give the pair of rating systems a low agreement score.

What about campaign contributions by defense industry members? The second
half of main divides voters into high- and low-contribution recipients. To improve the
comparison with the above, we’d like a division that produces roughly the same bin
counts as the split by party did. So the SQL first counts the Democrats (there are 194),
and then finds a contribution cutoff that would produce 194 low-contribution voters.
[A complication: the correct contribution cutoff is $13,000, but there are four people who got that level of
contributions, so there’s no way to get a perfect match between counts. To two decimal places, it makes no
difference in the statistics into which bin we put these four voters.]

Then, we try the same measures using these two systems of categorization. It
turns out that the campaign contributions give a marginally greater agreement rate on
all measures calculated, though it is not enough to be a significant difference. [To get
variances for these measures, by the way, I recommend bootstrapping.]

Next time, I’ll present the alternative measure of intecoder agreement that I devel-
oped based on entropy measures. As a preview, it’s already calculated in the example
code (as PI).

3

#include ”169−kappa and pi.h”

apop data ∗kappa and pi(apop data const ∗tab in){
apop data ∗out = apop data alloc();
Apop stopif(!tab in, out−>error=’n’; return out, 0, ”NULL input. Returning output with

’n’ error code.”);
Apop stopif(!tab in−>matrix, out−>error=’m’; return out, 0, ”NULL input matrix.

Returning output with ’m’ error code.”);
Apop stopif(tab in−>matrix−>size1 != tab in−>matrix−>size2, out−>error=’s’;

return out, 0, ”Input rows=%zu; input cols=%zu; ”
”these need to be equal. Returning output with error code ’s’.”, tab in

−>matrix−>size1, tab in−>matrix−>size2);

apop data ∗tab = apop data copy(tab in);
double total = apop matrix sum(tab−>matrix);
gsl matrix scale(tab−>matrix, 1./total);
double p o = 0, p e = 0, scott pe = 0, ia = 0, row ent = 0, col ent = 0;
for (int c=0; c< tab−>matrix−>size1; c++){

double this obs = apop data get(tab, c, c);
p o += this obs;

Apop matrix row(tab−>matrix, c, row);
Apop matrix col(tab−>matrix, c, col);
double rsum = apop sum(row);
double csum = apop sum(col);
p e += rsum ∗ csum;
scott pe += pow((rsum+csum)/2, 2);

ia += this obs ∗ log2(this obs/(rsum ∗ csum));
row ent −= rsum ∗ log2(rsum);
col ent −= csum ∗ log2(csum);

}
apop data free(tab);

asprintf(&out−>names−>title, ”Scott’s and Cohen’s ”);
apop data add named elmt(out, ”total count”, total);
apop data add named elmt(out, ”percent agreement”, p o);
apop data add named elmt(out, ””, ((p e==1)? 0: (p o − p e) / (1−p e)));
apop data add named elmt(out, ””, ((p e==1)? 0: (p o − scott pe) / (1−scott pe)));
apop data add named elmt(out, ”P I”, ia/((row ent+col ent)/2));
apop data add named elmt(out, ”Cohen’s p e”, p e);
apop data add named elmt(out, ”Scott’s p e”, scott pe);
apop data add named elmt(out, ”information in agreement”, ia);
apop data add named elmt(out, ”row entropy”, row ent);
apop data add named elmt(out, ”column entropy”, col ent);
return out;

}

4

#include ”169−kappa and pi.h”

int main(){
int readin status = apop text to db(”amash vote analysis.csv”, .tabname=”amash”);
Apop stopif(readin status== −1, exit(1), 0, ”Trouble reading in the data. ”

”Have you downloaded it to this directory?”);

apop query(”create table summed as select vote, party, count(∗) as ct from amash group by
vote, party”);

apop data ∗confusion = apop db to crosstab(”summed”, ”vote”, ”party”, ”ct”);
apop data show(confusion);
apop data show(kappa and pi(confusion));

//Find the contribution level that matches the count of democrats;
//use that cutoff to produce a binary small−contrib|big−contrib categorization.
//There are 194 dems. The contribution cutoff is thus $13,000. There are four

double dem count = apop query to float(”select count(∗) from amash where party=’
Democrat’”);

apop query(”create table contrib sums as select vote, ”
”contribs> (select max(contribs) from ”

”(select contribs from amash order by contribs limit %g)) ”
”as big dollars, ”
”count(∗) as ct from amash group by vote, big dollars”, dem count);

confusion = apop db to crosstab(”contrib sums”, ”vote”, ”big dollars”, ”ct”);
apop data show(confusion);
apop data show(kappa and pi(confusion));

}

5

