Why I capitalize distribution names

Ben Klemens
5 November 2014

There are two ways to think about what a parameterized statistical distribution is.

As a single point: Here, the Normal distribution is a mapping of the form \(f : (x, \mu, \sigma) \to \mathbb{R}^+ \). More specifically, it is \(f(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \). Within the infinite space of functions, this is a single point. We often fix certain parameters, and get a function of fewer dimensions, like \(f(x, \mu = 0, \sigma = 1) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \).

As a family: under this perspective, when we fix, say, \(\mu = 2, \sigma = 1 \), we get a Normal Distribution. When we fix \(\mu = 3, \sigma = 1 \), we get a different Normal Distribution. Here, there is a meta-function of the form \(N : (\mu, \sigma) \to (f : x \to \mathbb{R}^+) \), which defines a family of functions, and produces a series of Normal distribution functions depending on the values to which \(\mu \) and \(\sigma \) have been fixed.

Both of these approaches are coherent, and if you go with either, I respect you fully. Almost any Wikipedia page about a distribution will jump back and forth between these two interpretations, so at the end it’s impossible to say whether a Normal Distribution has the form \(f(x, \mu, \sigma) \) or \(f(x) \). But any given Wikipage is edited by several people, so finding anacoluthons\(^1\) on Wikipedia is something of a fish-in-a-barrel exercise. But my web analytics software tells me that a large percentage of the readers of this blog are individual human beings; if that’s you, I recommend picking one interpretation or the other and sticking with it.

I prefer the single-point characterization over the family. At the least, the meta-function is confusing, and implies the two-step estimation process of fixing the parameters, then grabbing a data point. This is a certain type of workflow that may or may not be what we want.

Of course, this gets into the Bayesian versus Frequentist debate. The stereotypical Frequentist believes that there is a true value of \((\mu, \sigma) \), and our job is to find it. This more closely aligns with a search for a single Normal distribution in the family of Normals. The stereotypical Bayesian doesn’t know what to believe, and thinks that reality may even be an amalgam of many different values of \((\mu, \sigma) \). Either perspective works under either the single-point or family interpretation—as they say, mathematics is invariant under changes in notation—but the Frequentist approach more closely aligns with the two-step estimation process of the family interpretation, and the Bayesian approach is much easier to express under the single-point interpretation. My earlier post about Bayesian updating (entry #182), with frequent integrals of \(f(x, \mu, \sigma) \) over parameters certainly would have been more awkward via the family interpretation.

\(^1\)https://en.wikipedia.org/wiki/Anacoluthon
Grammatically, this has a clear implication. If the Normal Distribution is the name for that single expression up there, then its name should be capitalized as a proper noun, like London or Jacob Bernoulli, which are also unique entities. If a normal distribution is one of a family of functions, then it is a class of entities, like cities or people, and should be lower case.

By the way, I used to write “Normal distribution,” but none of the style books would be OK with that. The C in London City is capitalized; same with the D in Normal Distribution.

There’s a bonus of consistency, because so many statistical models are capitalized anyway:

- Gaussian
- Poisson
- OLS
- F distribution
- Normal distribution [because the normal distribution can easily confuse the reader (and I prefer it over Gaussian because I’ll always choose descriptive over appellative).]

At which point, the few distributions that would be lower-cased under the family interpretation start to stand out and look funny.