Platforms for reliable research

Ben Klemens

23 April 2017

This stems from a Twitter thread about how you can’t do replicable science if some
package won’t be installable five years from now, which is not an unusual case for
Python packages. Click on the lower date stamp for more (including another view of
the communities I describe here):

Meanwhile, it was observed, C code from the 1980s routinely runs just fine. For
example, I work with some large-scale examples that I could expound about. Or, when
you type grep or 1s, you are calling up a C program whose core was likely written
in the 1980s or early 1990s. Unless it depends on specific hardware features, I think
it’s hard to find correctly written C code from the 1990s that doesn’t compile and run
today.

I’ve been using R since 2000, and a lot of my code from even five years ago won’t
run. We had a project which repeatedly hit problems where package A needed version
2.3.1 of the Matrix package, but not version 2.3.2 or later, but package B relies on
version 2.4 of the same package. In the end, it killed our project: every time we had to
re-tweak the install, our potential users perceived the project as a little less reliable.

So I honestly believe it’s true that C code is more reliable and more likely to run a
decade from now, and there’s a wash of evidence to demonstrate this. Then, why?

I think there are two reasons: there are cultural differences in a language that has a
standard, and the lack of a standard package manager(s) has been an inadvertent bless-
ing here. These features have led to a social system that allows us to build technical
systems that don’t depend on people.

There’s a standard An interpreted language doesn’t need a standard because if the
interpreter got the right answer, then you’ve conformed 100%. In the long term, this
is terrible. Raymond Chen, a kernel-ready programmer at Microsoft, has a blog that is
filled with convoluted stories like this one!, whose template is that authors of Windows
programs found an undocumented/underdocumented part in the workings of Windows,
then years later the Windows OS people try to change that part, while fully conform-
ing to documented behavior, then get a million complaints as the undocumented trick
breaks. That link is the first example I grabbed, but keep skimming; he’s been blogging
these stories for a decade or so.

This state is hard to picture in the world of plain C, because having a standard
affects culture. I can’t count how many people have written to tell me about some piece

"https://blogs.msdn.microsoft.com/oldnewthing/20160822-00/?2p=94135

https://blogs.msdn.microsoft.com/oldnewthing/20160822-00/?p=94135

of code I put out in the public sphere that might compile on every modern compiler, but
does not—or even may not—conform to the ISO standard. Not writing to the contract
is a bug, whether it works for me or not.

Meanwhile, in the world of R or Python, the documentation could be seen as the
contract. But do you really think every single R function documents its behavior when
it receives a NaN or ~-Infinity argument? And with no culture of strict contractual
obligation, there is little that prevents the authors from just rewriting the contract. The
same holds in greater force with third-party packages, which are sometimes developed
by people who have no experience writing contracts-in-documentation so that they are
reasonably future-proof.

I liked this Twitter exchange. Each tweet is another variant of the statement that the
R community has no coherent contract or contract conformance culture. [Again, click the
date stamp for the two replies.]

So, contracts exist in C-world and elsewhere, but from everything I have seen, the
cultural norms to take those contracts seriously are far stronger among C authors.

Towers Azer Koculu has a Javascript package named Left Pad which provides a func-
tion to pad a string or number with white space or zeros. That’s the whole package: one
function, to do something useful that I wouldn’t want to get side-tracked into rewriting
and testing, but which is not far from a Javascript 101 exercise.

It was a heavily-used micro-package, and not just by fans of left padding, as a data
analysis package might use a table-making package, which would depend on Left Pad.
When Mr Kogulu unpublished all his Node Package Manager submissions?, this broke
everything.

In practice, R packages tend to have several such microdependencies, while the
authors of C packages tend to cut something like a left pad function from the library
code base and paste it in to the code base of the project at hand. Authors of the GSL
made an effort to write its functions so they could be cut and pasted. SQLite has a
version in a single file, whose purpose is to allow authors to copy the file into their
code base rather than call an external SQLite library.

I think it is the presence or lack of a standard package manager that led to this
difference in culture and behavior. If you have the power to assume users can download
any function, so seamlessly it may even happen without their knowledge, why wouldn’t
you use it all the time?

The logical conclusion of having a single, unified package manager is a tower of
left-pad-like dependencies, where A depends on B and C, which depends on D and E,
which depends on B as well.

The tower is a more fragile structure than just having four independent package de-
pendencies. What happens when the author of B changes the interface a little, because
contracts can change? The author of package A may be able to update to B version 2,
but E depends on B version 1. Can you find the author of E, and convince him or her
to update to B version 2, and to get it re-posted on CRAN so you can use it in a timely
manner?

Zhttp://cryto.net/~joepie91/blog/2016/03/23/reflections-on-npm-gate-one—-day-later/

http://cryto.net/~joepie91/blog/2016/03/23/reflections-on-npm-gate-one-day-later/

To get the package on to CRAN, the author of E will have to pass the tests he or
she wrote on every machine R runs on. Douglas Bates threw up his hands® over the
problems this engenders:

I am the maintainer of the RcppEigen package which apparently also makes
me the maintainer of an Eigen port to Solaris. When compilers on Solaris
report errors in code from Eigen I am supposed to fix them. This is diffi-
cult in that I don’t have access to any computers running Solaris So I
have reached the point of saying “goodbye” to R, Rcpp and Ime4 ...

It’s good that CRAN wants to provide a guarantee that a package will compile on a
given set of platforms. First, it does this because there is no culture of contracts, so the
only way to know if an R/C++ package will compile on Solaris is to try it. Second, the
guarantee is somewhat limited. Did the package get the right answers on all systems?
If it had numeric tests, those tests passed, but the CRAN testing server knows nothing
of how to test eigenvector calculations. I've bristled at more than enough people who
have told me they trust the numbers a package spits out because it’s on CRAN so it
must have been tested or peer-reviewed.

In the short run, this is great. We’ve solved a lot of dependency-mismatch problems.

In the long run, we haven’t solved anything. You come back in three years to re-
run your analysis, and you find that package B was removed, because the author was
unable to reply to requests to fix new issues, because she died. Or the latest version of
package B is impossibly different, so you try the old one, and you find that none of the
guarantees hold: to the best of my knowledge, CRAN doesn’t back-test old versions of
a package (what would they do if one broke?), so whether your old version of package
B works with the 2020 edition of R and its ecosystem is as much a crap shoot as it ever
was.

That was a lot of kvetching about package manager issues, but with the intent of
comparing to C-world.

With no official package system, your C library has no means of automatically
downloading dependencies, so forget about building a tower where you instruct readers
to chase down a sequence of elements. Users will tolerate about two steps, and most
won’t even go that far. For code reuse, this has not been good, and we see people re-
inventing well-established parts over and over again. But for reliability ten years down
the road, we get a lemons-out-of-lemonade benefit that building unreliable towers of
dependencies is impracticable.

[GUI-based programs sometimes depend on a tower of dependencies, and a package manager like Red
Hat’s RPM or Debian’s APT to install them. Such programs also typically have command-line versions just
in case.]

With no package manager, you have to give users the entire source code and let
them rebuild. The build tools are standard as well. The norm is the makefile, which
is defined in the POSIX standard. If you’re using Autoconf, it will run a POSIX-
compliant shell script to produce such a standard makefile.

There is nobody to check whether your library/package will build on other peoples’
machines, which means that you have to stick to the contract. On the one hand, people

3http://marc.info/?l=r-sig-mixed-models&m=138661192407677&w=2

http://marc.info/?l=r-sig-mixed-models&m=138661192407677&w=2

screw this up, especially when they have only one compiler on hand to test against. On
the other, if they get it right, then you are guaranteed that today’s version of the code
will compile in a decade.

I’'m no Luddite: it’s great that package managers exist, and it’s great that I can
write one line into the metadata to guarantee that all users on an Internet-enable com-
puter [e.g., who don’t work on a secured system] With an appropriate configuration can pull the
dependencies in a second. It’s great that there are systems monitoring basic package
sanity.

But for the purposes of long-term research replicability, all of these boons are
patches over the lack of a system of contracts or a culture that cares deeply about those
contracts. Think back to how often I’ve mentioned people and social systems in my
discussion of interpreters and package managers. Conversely, once you’ve zipped up
code written to contract and a makefile-generator written to contract, you’re irrelevant,
your wishes are irrelevant (assuming the right licenses), and there is no platform that
can deliberately or due to failure prevent a user from installing your package. People
and their emotions and evolving preferences are out of the picture. In the end, that’s
really the secret to making sure that a platform can be used to generate code that is
replicable years and decades from now.

