Appendix O: Tools for C programming

Ben Klemens

April 4, 2009

This is the online appendix to the book Modeling with Data. It explains the tools
that go into a productive C environment, and how to install them. The intended audi-
ence is people who are computer-literate with a Windows/Mac-type graphical system,
but who are not familiar with the POSIX toolchain.

The problem is that you have choices. Because C is a standard and not a product,
there are an endless number of tools for writing your code, systems that will compile
that code, and libraries whose functions you can use. That means that no one can put
together a definitive C development package—so you will need to select and gather
tools yourself.

The package manager

The package manager offers a consistent means of downloading all the pieces of the
puzzle from online sources. With a package manager, the installation process is short;
without one, the process is nasty and brutish.

If you are using a POSIX system, you are probably already familiar with your
package manager. Red Hat Package Manager [RPM] and Debian’s Apt are the most
popular, and both have many front-ends, with names like YaST and synaptic.

If you are using Windows, you have a few options. One is to get Mingw, which
provides a compiler and some basic auxiliary tools. It has its own installation program
and some package facilities. Another option (which I recommend) is Cygwirﬂ It is
free, has a full-fledged package manager, and provides an entire POSIX subsystem,
with the attendant compilers, editors, and so on. Along the same lines, the Portable
Ubunt is a version of the Ubuntu Linux distribution that runs as a program under
Windows. It is newer than Cygwn, and so has a predictable set of plusses and minuses:
no-install setup, more processor intensive, more features, less tested.

Mac OS X users will be using the terminal (typically found in the accessories sub-
folder of the applications folder) to do most of the work below. The package manager
of choice is Fin You may also need to download Xcod Apple’s development
toolchain, to get Fink and compilation to work.

"http://cygwin.com/
2http://portableubuntu.sourceforge.net/index.php?section=download
3http://fink.sourceforge.net/
4http://developer.apple.com/tools/download/

file:index.html
http://cygwin.com/
http://portableubuntu.sourceforge.net/index.php?section=download
http://fink.sourceforge.net/
http://developer.apple.com/tools/download/

Now that you have a package manager, which packages out of the thousands of
available packages should you install? The first element you will need is a compiler.
This book is centered around gcc, and all package managers offer it; some systems
offer other C compilers that are as efficacious. You will also rely heavily on a debugger;
the companion to gcc is gdb. You will need the make utility, which is discussed in
full in Appendix A.

The next step is picking function libraries. This book relies heavily on four libraries
(beyond the standard C library that comes with the C compiler): the GSL, the GSL
BLAS, SQLite3, and Apophenia.

Not all package systems include all four libraries. Also, a library includes two com-
ponents: the object files that one needs to run programs that use the library’s functions,
and the header files that describe those functions. Both are necessary for compiling
new C programs as you will be doing. Also, some package systems have the annoying
habit of separating the documentation for libraries into a separate package.

Thus, you will need to look for several packages to fully install a library. For
example, the GSL may be divided into packages named gsl, 1ibgsl, 1ibgsl-
devel, and gsl-doc. There is unfortunately no common custom or standard for
naming, but you will almost certainly need at least one —dev or ~devel package for
each library (possibly including 1ibc6-devel). When in doubt as to whether you
need a package, install it. [However, don’t try to install all the packages—you could
be waiting a day for the download and your hard drive probably won’t be able to hold
them all.]

Some of the above libraries may be entirely missing from your package manager.
In this case, see below about compiling the libraries from source code.

While you are at the package manager, why not stock up? Because there is a
standardized and automated means of installing any program, you can easily pull down
Gnuplot, unzip (to open compressed files), a chess computer, PDF viewers/generators,
CD-to-MP3 converters (like grip or notlame), the TEX/I4IEX document preparation
systems, or a photo-editing system like the GIMP. Unlike certain operating systems of
old, installing more packages onto a POSIX subsystem does not reduce the stability of
the system: the additional programs and libraries just take up more space on the hard
drive.

IDEs

Returning to setting up your environment for writing scripts, you broadly have the
choice of two paradigms in which to work. The first is the integrated development
environment (IDE). This is an all-in-one environment comparable to a multiwindow
stats package, with one window for your program, one for compilation, one for out-
put, et cetera. Popular choices include Dev-C++ or Eclipse, which are available via
most package managers. Many other IDEs of varying quality are available for any
graphically-oriented operating system.

The other option is via the command line. Since you are certainly using a system
that supports multiple WindowsE] you are basically using your operating system as an

SEven if you are dialing in to a server’s single-window terminal, you can either dial in twice, or use

IDE. In this paradigm, you can have one window that is dedicated to a text editor with
your code, and another window or two for compilation, debugging, and output.

The command prompt

Even if you are devoted to your IDE, it is worth knowing your command prompt. You
will need it to install libraries that are not avaialable via the package manager, you may
need it to set environment variables, and you may find it helpful when your IDE seems
to be acting strangely.

Linux/UNIX users will be using xterm, Eterm, Aterm, gnome-terminal, rxvt, or
any of a number of other such options. Mac users, the terminal can be found in the
Applications— Accessories folder.

Windows users, you will be doing work from the Cygwin prompt; if you did not
ask Cygwin to put an icon on your desktop or menu bar, you can find a Cygwin folder
among the other program folders in the Start menu. By default, the Cygwin prompt is
just a script run from Windows’s command box, which is not very pleasing. Cygwin
can install an Xterm, which provides many @sthetic and practical benefits over the
Windows command box. If you installed Gnuplot or any graphical games, then Cygwin
also installed the X Window subsystem. Type startx at the Cygwin prompt to get
an Xterm, from which you can run the various graphical programs, and enjoy a better
command-prompt experience.

Users of graphical window systems tend to think of the desktop as the base for all
their data; users of command-line systems have a home directory. So the first bit of
orientation is finding out how to get to one from the other.

In Linux and MacOS, it’s easy: the Desktop directory is directly inside the home
directory.

Cygwin sets up its own filesystem. The default is that it is based at c: \cygwin,
but you may have selected something else in the first step of the Cygwin setup. Within
that directory, you will find a series of directories with short names, like usr, etc,
lib, and home. These are the customary base directories for a POSIX filesystem,
harking back to the days when letters were expensive. Inside the home directory,
you will naturally find your home directory. In the other direction, what Windows
calls its c: drive, Cygwin calls /cygdrive/c, so your home directory is likely in
/cygdrive/c/Documents\ and\ Settings/yourname.

As with most shells, you can use tab completion to type long names. Try typing
/cygdrive/c/Doc and then hit the <tab> key; the system should fill in the rest for
you. Notice that the directory-dividing slashes in POSIX systems are standard forward
slashes (over the ? key on standard US keyboards), not backslashes (sharing a key with
the —).

Help

Over time, documentation has grown increasingly interactive and hyperlinked. The
original UNIX systems included manual pages via the man command, and there are

screen to multiplex the window.

manual pages for most of the C functions in the standard libraries. Try man printf
orman atoi, for example.

By the mid-90s, the TXinfo format emerged. TgXinfo documents require a TgXinfo
reader (EMACS can serve as one, or there is a standalone version), which can navigate
among links and tables of contents in the documentation. TgXinfo documentation is
a part of the GNU coding standards, so you are generally guaranteed that parts of the
GNU toolchain, such as gcc and the version of make that you are probably using, will
have TgXinfo documentation. You can read these documents by commands such as
info gccorinfo make. If you have trouble navigating in the info reader, then
you can get help with info info.

The current norm for presenting complex documents is the Web page, so more
current libraries like Apophenia have documentation formatted for your web browser.
Because any one library has more functions than anyone could possibly memorize,
consider your web browser to be an integral part of your code-writing environment.

You probably have have all the manuals for both the programs and the functions
listed in this chapter on your hard drive now. But if you are missing documentation,
you can surely find it online. Just enter the command you would have typed at the
command line into your favorite search engine. A Web search for info gsl or man
printf will turn up exactly the documentation that is missing from your system,
formatted for your Web browser.

Text files

C programs are files of text, and all of your work will be manipulations of text, so it is
in your long-run best interest to get a good text editor. At the very least, you will get
error messages listing line numbers, so if your text editor can’t tell you which is line
105, you will need to get a new one. Text editors written with programming in mind
often color different syntax elements differently, which gives a quick visual indication
that you spelled double as doulbe or forgot an endquote. Most offer an outline or
folding mode, that shows functions only as headers so you can see the broad form of
your program, but unfold functions as necessary to work on their internals.

The two most popular are EMACS and vi. EMACS is better for people who prefer
to have everything under one roof—it is often billed as an IDE—while vi is better for
the minimalists and touch typists. Both involve a learning curve, meaning that they
will be difficult to use at first, will require reading the manual, and will in the long run
save you hours over using simpler text editors such as those typically included with
IDEs. Some implementation of both is available for all computer types, and you are
encouraged to start learning one or the other now. If neither suits your fancy, there are
literally hundreds of others to choose from.

Installing from source

You are guaranteed that the package manager will provide you with a compiler, a make
facility, a debugger, and a choice of text editors. However, few package repositories
provide all relevant libraries; many focus on consumer- or business-oriented libraries
and so pass on numerical libraries.

In this case, you will need to download the source code and compile it yourself.

e Get the GSL from the GSL home pageﬂ If you are near North Carolina, maybe
try the ibiblio mirror’}

e For SQLite3, go to the SQLite home pag

e Download Apophenia here,

Now that you have the source code, you need to unpack it and compile it. Fortu-
nately, all of these libraries, as with most libraries, use the GNU’s Autoconf system to
handle almost all configuration issues for you, so you need to do minimal work. Here
are the steps:

tar xvzf pkg.tgz #change pkg.tgz to the appropriate name

cd package_dir #same here.

./configure

make

sudo make install #see below if you don’t have root privileges.

If the system can’t find tar or make, then go back to your package manager and
install them. The last line runs make install, but as the administrator (aka supe-
ruser, aka root). On some systems, you would instead use su —c "make install".
Cygwin users can just runmake install. There are further steps below if you need
but do not have root privileges.

Info: Cygwin likes to give you many lines of technical information when com-
piling, typically about substituting one symbol for another, which look worrisome to
many. Don’t panic: these really are just informative, and any line beginning with
Info: does not indicate an error.

LD_LIBRARY PATH

During one or many of the installation steps above, you probably got a warning that
looks like this:

Libraries have been installed in:
/usr/local/lib

If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use the ‘-LLIBDIR’
flag during linking and do at least one of the following:

Shttp://sources.redhat.com/gsl
Tftp://ftp.ibiblio.org/pub/mirrors/gnu/ftp/gnu/gsl/gsl-1.8.tar.gz
Shttp://www.sqlite.org

https://sourceforge.net/project/showfiles.php?group_id=130901
http://sources.redhat.com/gsl
ftp://ftp.ibiblio.org/pub/mirrors/gnu/ftp/gnu/gsl/gsl-1.8.tar.gz
http://www.sqlite.org

If you did, then that means you will need to tell the linker where to look for your
newly installed libraries, by adding a line in your shell’s configuration file to search
for the libraries you’d just installed. Cutting and pasting the following to the command
prompt should do the trick. You will only need to do it once. If your operating system’s
name ends in the letter X, try this:

echo "export LD_LIBRARY_PATH=/usr/local/lib:\S$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc

If you are using Cygwin:

echo "export PATH=/usr/local/lib:\$PATH" >> ~/.bashrc
echo "export LIBRARY_PATH=/usr/local/lib:\S$LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc

These commands add a line to your . bashrc file, which starts every time the shell
(typically bash) starts.

However, environment variables frequently differ from system to system, so the
above may not work for you. For more on environment variables and setting your
library path, see Appendix A of the main textbook.

Access denied

You may be working on a system where you do not have access to the places to which
libraries are typically installed. You will need to create a subdirectory in your home
directory in which to install packages. The compilation from source will be the same as
before, but with one addition: by adding the ——prefix switchtothe . /configure
commandﬂ Here is a script to give you the idea.

export MY_LIBS = src #choose a directory name to be created in your
home directory.

tar xvzf pkg.tgz #change pkg.tgz to the appropriate name

cd package_dir #same here.

mkdir $HOME/S$MY_LIBS

./configure —-prefix S$HOME/SMY_LIBS

make

make install #Now you don’t have to be root.

echo "export LD_LIBRARY_PATH=$HOME/S$MY_LIBS:\$SLD_LIBRARY_PATH" >> ~/.bashrc

A few final tips

Here are some notes on how I configure my own system. Perhaps some of these little
tricks will be useful to you as well.

9configure is typically very configurable. Try . /configure —-help for a list of options specific

to the code you are compiling.

GDB

Adding definitions for your most-used processes to .gdbinit can make using gdb
much more pleasant. For example, you will frequently be viewing vectors and matri-
ces, so it’s nice to have a quick way to do so. Add the following to the . gdbinit file
in your home directory (it may be hidden):

define pv
p apop_vector_show ($arg0)
end

define pm
p apop_matrix_show ($Sarg0)

end
define pd

p apop_data_show ($Sarg0)
end

define pa
p *($arg0)@Sargl
end

define mr #one more little convenience
make
run

end

Then pv my_vector or pm my matrix will show the full contents of these
items. For arrays, you will need to give a name and a size, like pa items 5.

Compiling

Once you have a makefile that works for your system, it will generally work with
minimal modification for any program (especially if the code is in one file).

Thus, I have a single standard makefile, which I copy from directory to directory;
it is very much like the one provided as sample code. The final program name is not
hard-coded (as the sample makefile does), but is simply a variable name, PROG. I put
a link (or a copy) of the makefile in the directory with today’s project, set the PROG
environment variable, and the system is now entirely set up for compilation.

In -s “/tech/makefile
export PROG=todaysproject
make run

[In fact, I've even aliased alias e=export inmy .bashrc for still less typing: e
PROG=todaysproject.]

