
An ABM in the box

Ben Klemens

18 July 2013

[Part of a series of posts that started here (entry #146)]
I promised you agent-based models, so here’s a model of the demand-side of an

economy:

• There are 1,000 agents.
• Each agent i has a budget allocation bi and preference coefficient αi, each drawn

from independent Normals. We fix σ = 1 for both distributions, leaving us with
two parameters from this part of the model: µb and µα.

• Two goods are available for purchase; the first has price p and the second price
one (this is without loss of generality from a setup with two prices p1 and p2).

• Each agent’s utility from purchasing the good is U(q1, q2, α) = qα1 + q2. Agents
are utility-maximizing.

• Of course, agents can’t overspend, so they maximize subject to the constraint
that pq1 + q2 ≤ bi.

• We observe the mean consumptionQ1 andQ2 (total consumption divided by the
number of agents).

We could readily add to this simple framework agent interactions, a more interest-
ing utility function, agent irrationality, or other bits of added realism.

Is this mechanical sequence of events a statistical model? Yes. All of the entries in
this series to this point have been aimed at allaying any concerns about this question.

Does it fit the basic form of a model (entry #147)? Yes: given a set of param-
eters µb, µα, p1, and a observed mean consumption Q1, Q2, the model specifies the
likelihood Lm(µb, µα, σbα, p,Q1, Q2).

Can it be wrapped in the same black box as a Normal distribution or regression?
Yes: we can use this the same way we use all of the models to this point, making ran-
dom draws, estimating the parameters given data, transforming (entry #148) or chain-
ing it with other models (entry #150), et cetera. The only restant technical issue is
that a likelihood with a built-in random number generator is stochastic, so we have to
be careful about consistency (i.e., as draws→ ∞, parameter estimates converge), and
there are practical difficulties of using a stochastic function (entry #153).

Can this model be tested? Yes, but only in the same way that OLS and its param-
eters can be tested, meaning that we use the likelihood function asserted by the model
(entry #152) to test the odds that statistics are significant.

1



OLS is much easier to state: as in earlier entries, we could write down the entire
model in six symbols, LN (Y,Xβ, σ), versus the text exposition for the model above.
But that means that the difficult subtleties are implications, not assumptions. I’d go
over them, but there are entire textbooks1 devoted to the implications of the OLS model.
The random-demand model above is more explicit about its moving parts, but it doesn’t
have bookshelves devoted to probing further implications.

The modeling world tends to break down into social subgroups based on which
assumptions are most plausible to whom. Agent-based modelers often find the linearity
assumptions underlying OLS to be entirely implausible; people accustomed to simple
linear models often suspect that ABMs have hidden assumptions or undesirable and
unanticipated characteristics.

I’ll have a few more points on this in a few entries.
Meanwhile, here’s today’s sample code to implement the above model, delivering

on the promise that we can make draws, get likelihoods, and estimate parameters. As
usual, it’s easiest to read the code from the bottom up.

• As is increasingly the pattern, the bulk of the file is fleshing out the elements
of the model, and main does simple model applications. The application is
mostly the same sort of round-trip as past entries, generating a small data set,
then estimating the optimal parameters given that data set. The numeric accuracy
for this round-trip is really not great; Apophenia 1.0 should improve on it. I use
the EM-style strategy of dimension-by-dimension optimization.

• Looking at the p function, we see that a single likelihood for a given data/param-
eter set is found by making 500 draws, then smoothing it using a kernel density
estimate in which a Multivariate Normal is placed over every drawn point; a lot
of lines of code are about setting up the MVN and wiring up the KDE.

• The core of the model—the part I described above—is a single draw of a popu-
lation and its decisions. That’s the draw function. The first several lines shunt
parameters, then we draw the agents, then the next loop does the optimization for
each agent. There are many ways to make this more streamlined, but I wanted to
keep it ABM-like. For example, we might want to have an interaction step be-
tween generating the population and their consumption decision, so I left those
as separate loops.

• Given the problem

maxu = qα1 + q2 3 b = p1q1 + q2

the optimum, where ∂u/∂q1 = 0 and the budget constraint is satisfied, is

q1 = (p1/α)1/(1−α)q2 = max(b− p1q1, 0)

1http://www.amazon.com/exec/obidos/tg/detail/-/1405182571/qid=
1120157199/sr=8-1/ref=pd_bbs_ur_1?v=glance&s=books&n=507846

2

http://www.amazon.com/exec/obidos/tg/detail/-/1405182571/qid=1120157199/sr=8-1/ref=pd_bbs_ur_1?v=glance&s=books&n=507846
http://www.amazon.com/exec/obidos/tg/detail/-/1405182571/qid=1120157199/sr=8-1/ref=pd_bbs_ur_1?v=glance&s=books&n=507846


#include <apop.h>

typedef struct {
double b, alpha, q1, q2;

} an agent;

void draw(double ∗qs, gsl rng ∗r, apop model ∗m){
double m1 = apop data get(m−>parameters, 0);
double m2 = apop data get(m−>parameters, 1);
double p1 = apop data get(m−>parameters, 2);

apop model ∗ba model = apop model stack(
apop model set parameters(apop normal, m1, 1),
apop model set parameters(apop normal, m2, 1)
); //leaks; don’t care.

//set up agents
int agent count=1000;
an agent a list[agent count];
for(int i=0; i< agent count; i++){

double out[2];
do {

apop draw(out, r, ba model);
a list[i] = (an agent){.b=out[0], .alpha=out[1]};

} while (a list[i].alpha <=0);
}

//agents decide
qs[0]=qs[1]=0;
for (int i=0; i< agent count; i++){

qs[0] += a list[i].q1 = GSL MIN(
pow(p1/a list[i].alpha, 1./(1−a list[i].alpha)),
a list[i].b/p1);

qs[1] += a list[i].q2 = (a list[i].b − p1∗a list[i].q1);
//printf(”%g %g\n”, a list[i].q1,a list[i].q2);

}
qs[0] /= agent count;
qs[1] /= agent count;
apop model free(ba model);

}

//for the Kernel density: center a Uniform distribution around a datum
void set fn(apop data ∗d, apop model ∗m){

Apop matrix row(d−>matrix, 0, onerow);
gsl vector memcpy(m−>parameters−>vector, onerow);

}

long double p(apop data ∗d, apop model ∗m){
apop multivariate normal.vsize =
apop multivariate normal.msize1=
apop multivariate normal.msize2= 2;
apop model ∗kernel = apop model set parameters(apop multivariate normal,

0, 1, 0,
0, 0, 1);

apop model ∗smoothed = apop model copy set(apop kernel density, apop kernel density
,

.base data = apop model draws(m, 500), .kernel=kernel, .set fn=set fn);
double out = apop p(d, smoothed);
apop data free(smoothed−>data);
apop model free(smoothed);
return out;

}

apop model demandside = {”Demand given price”, .vsize=3, .dsize=2, .draw=draw, .p=p};

int main(){
apop data ∗draws = apop model draws(apop model set parameters(demandside, 2.6, 1.6,

1.2), .count=20);
apop data show(draws);

Apop settings add group(&demandside, apop mle, .tolerance=1e−5, .dim cycle tolerance
=1e−3);

apop model show(apop estimate(draws, demandside));
}

3


