
A Julia wrapper for Apophenia

Ben Klemens

22 December 2013

Last time I expounded on Julia (entry #172) in code-free generalities. This time, I’ll give a
specific example, in which I use Apophenia’s library of statistical models from a Julia front-end.

Conceptually, the big theme of this column is that Julia makes a real effort to talk to C structures,
which means work defining the C-to-Julia type mapping, but makes the function calls themselves
almost trivial. Nontrivial C code in the present day manipulates nontrivial structures, not just flat
homogeneous arrays, so being able to call a function that takes in a struct opens up a world of
already-written code for us to wrap in Julia functions.

The demo is a rehash of the demo code from a previous simple logit (entry #171), which was
two lines of C code, mostly because I had a lot going on each line. Stretching out the process of
explicitly opening an on-disk database, reading in the data to a table named dta, querying out the
desired parts to a matrix-like structure, and estimating the statistical models looks like this in Julia:

Get this and the code below from the github repo1 with all the code associated with this blog.
Provided you have Apophenia (and its dependencies) and Julia installed, run it with

julia −L 173−ademo.jl

which leaves you at the Julia command prompt post-script to interrogate out1, out2, oest,
data, et cetera.

The q is an apop_data struct, which is defined below. In most languages, this counts as
an opaque pointer, meaning that it is pointing to data that is not in a native data type, so these

1https://github.com/b-k/modeling_examples

require(”apop.jl”)

db open(”test.db”)
text to db(”173−data.txt”, ”dta”)
q = query to data(”select out, input from dta”)
data = data as array(q)
db close()

oest = apop estimate(q, ”apop ols”)
out1 = data as vector(oest.parameters)

lest = apop estimate(q, ”apop logit”)
out2 = data as array(lest.parameters)

1

https://github.com/b-k/modeling_examples

opaque pointers are usable only to pass back to C. Here they are just semi-opaque. For example,
the apop_model Julia objects oest and lest include a parameter set, which we can view as a
Julia-native vector (for OLS, where the parameter set is a vector) or an array (for multinomial Logit,
where the parameter set can be a matrix).

The two strings describing the models in the above script, apop_ols and apop_logit, are
the names of objects in the C object library. More on how this works below.

apop.jl The apop.jl file provides enough to run the above demo, but not much more. You, the
reader, are welcome to pick it up and expand it to meet your needs. I’m reluctant to go much further
with it without talking to somebody better versed in the customs of Julian code-writers.

I’ll give some discussion first, then show the code file.
The first third of the file is a element-by-element mapping of C data structures. If you compare

it to the C header file2 where these types are declared, you’ll see how most of this is line-by-line
translation, as int in C becomes Int32 in Julia, char* in C becomes Ptr{Uint8}, et cetera.
After declaring a Julia type named apop_name, I can refer to Ptr{apop_name}. This may
seem obvious, but this much is already impossible in a lot of C-hosting languages.

Currently, the name element of the apop_model is not a pointer (char*), but a fixed ar-
ray (char[101]). I had to declare a throwaway type for a bitfield of 808 bytes (which I gave
a throwaway name3). The struct also has several pointer-to-functions, which have Ptr{Void}
placeholders in the Julia struct.

Having gone through the all-but-automatable process of mapping C struct elements to Julia
types, we can call functions that make use of these types.

The first function, db_open is a good and simple example of the process of calling a C function,
using ccall. The first argument to ccall is a pair of strings: the function name in the C library,
and the name of the C library itself. Julia knows how to call the POSIX-standard dlopen@4function
to open the library you name and use dlsym to find the function you named therein. Again, this
seems really trivial, but other systems sometimes make this a lot of work.

The db_open function uses standard C types, taking in a string and returning an int, but if you
skim further down, you’ll see that functions that take a Ptr{apop_data} or Ptr{apop_model}
behave identically. This works naturally given that we told Julia enough about the C structs to send
them to a function, and this is yet another example of something that a lot of C-wrapping languages
can’t do.

You can’t send a plain apop_data across the Julia-C border, but C functions usually take in a
pointer-to-struct anyway, so this is bothersome but not fatal.

Other noteworthy bits:

• The unsafe_load function reads the data at a pointer as the given struct. Thus, we take in
a Ptr{apop_data} and use the struct info declared in the top third of the file to look at its
constituents.

• The pointer_to_array function takes a simple C array and wraps it as a Julia-native
array.

2https://github.com/b-k/Apophenia/blob/master/types.m4.h
3https://en.wikipedia.org/wiki/Roland_808
4http://linux.die.net/man/3/dlopen

2

https://github.com/b-k/Apophenia/blob/master/types.m4.h
https://en.wikipedia.org/wiki/Roland_808
http://linux.die.net/man/3/dlopen

• The cglobal function is how we pull a single object, like the apop_ols model, out of a C
library. There’s some awkwardness about having a variable for the object name; see the Julia
documentation5 for an explanation of the workaround.

OK, here’s the 130 lines of code it took to set up Julia for reading a text file to database, pulling
query results to a Julia-native data set, estimating any of the dozens of statistical models that ship
with the Apophenia library6, and viewing the resulting parameters as Julia arrays:

5http://docs.julialang.org/en/release-0.2/manual/calling-c-and-fortran-code/
6http://apophenia.info/group__models.html

3

http://docs.julialang.org/en/release-0.2/manual/calling-c-and-fortran-code/
http://apophenia.info/group__models.html

require(”GSL”)

type apop name
title::Ptr{Uint8}
vector::Ptr{Uint8}
col::Ptr{Ptr{Uint8}}
row::Ptr{Ptr{Uint8}}
text::Ptr{Ptr{Uint8}}
colct::Int32
rowct::Int32
textct::Int32

end

type apop data
vector::Ptr{gsl vector}
matrix::Ptr{gsl matrix}
names::Ptr{apop name}
text::Ptr{Ptr{Ptr{Uint8}}}
textsize1::Int32
textsize2::Int32
weights::Ptr{gsl vector}
more::Ptr{apop data}
error::Uint8

end

bitstype 101∗8 backbeat

type apop model
name::backbeat
vsize::Int32
msize1::Int32
msize2::Int32
dsize::Int32
#apop settings type ∗settings;
data::Ptr{apop data}
parameters::Ptr{apop data}
info::Ptr{apop data}
void (∗estimate)(apop data ∗ data, apop model ∗params);
estimate::Ptr{Void}
#long double (∗p)(apop data ∗d, apop model ∗params);
p::Ptr{Void}
#long double (∗log likelihood)(apop data ∗d, apop model ∗params);
log likelihood::Ptr{Void}
#long double (∗cdf)(apop data ∗d, apop model ∗params);
cdf::Ptr{Void}
long double (∗constraint)(apop data ∗data, apop model ∗params);
constraint::Ptr{Void}
void (∗draw)(double ∗out, gsl rng∗ r, apop model ∗params);
draw::Ptr{Void}
void (∗prep)(apop data ∗data, apop model ∗params);
prep::Ptr{Void}
void (∗print)(apop model ∗params, FILE ∗out);
settings::Ptr{Void}
more::Ptr{Void}
more size::Int32
error::Uint8

end

function db open(dbname::String)
val = ccall((:apop db open, ”libapophenia”),

Int32, (Ptr{Uint8},), bytestring(dbname))
if val == 1

error(”db open: failed to open”, dbname)
end
val

end

function db close()
val = ccall((:apop db close base, ”libapophenia”),

Int32, (Uint8,), ’q’)
if val != 0

error(”db close failed to close database”)
end
val

end

function text to db(filename::String, tabname::String)
out = ccall((:apop text to db base, ”libapophenia”),

Cint,
(Ptr{Uint8},Ptr{Uint8}, Int32, Int32, Ptr{Ptr{Uint8}},
Ptr{Uint8},Ptr{apop data}, Ptr{Uint8}, Ptr{Uint8}),
bytestring(filename),
bytestring(tabname),
’n’, ’y’, C NULL, C NULL, C NULL, C NULL, bytestring(”|\t ”)

)
if out == 1

error(”text to db: trouble reading”, filename)
end
out

end

function query to data(query::String)
out = ccall((:apop query to data, ”libapophenia”),

Ptr{apop data}, (Ptr{Uint8},), bytestring(query))
data = unsafe load(out)
if data.error != 0

error(”query to data: trouble with query:”, query)
end
out

end

#Just the vector. No names.
function data as vector(inptr::Ptr{apop data})

in = unsafe load(inptr)
if in.vector == C NULL

return ()
end
m = unsafe load(in.vector)
transpose(pointer to array(m.data, (int(m.size),)))

end

#Just the matrix. No names.
function data as array(inptr::Ptr{apop data})

in = unsafe load(inptr)
if in.matrix == C NULL

return ()
end
m = unsafe load(in.matrix)
transpose(pointer to array(m.data, (int(m.size2), int(m.size1))))

end

function apop estimate(data::Ptr{apop data}, mstring::String)
mptr = @eval cglobal(($(mstring), ”libapophenia”), Ptr{apop model})
out = ccall((:apop estimate, ”libapophenia”),

Ptr{apop model},
(Ptr{apop data}, Ptr{apop model}),
data, unsafe load(mptr))

unsafe load(out)
end

4

