
D3: a travelogue

Ben Klemens

29 August 2016

Here’s my largest project in D3: a visual calculator for your U.S. 2015 taxes1. It
doesn’t look much like a scatterplot, but it uses a tool, Data Driven Documents (D3),
used extensively for traditional dots-on-a-grid plots. I’m going to discuss the structure
of this system, in the context of the last entry (entry #195), which went over the parts
of the standard data viz workflow (SDVW). If you’ve never used D3 and the acronym
DOM doesn’t have meaning to you, reading this may soften the initial blow of trying
to use it.

The DOM Document Object Model. The document on your web page screen is a
parent object with a well-defined set of child objects, akin to standard programming
language structs that hold other structs, or XML documents whose elements hold other
XML elements. Each struct holds elements of any sort: scalars, arrays, sub-objects,
functions. Being a simple implementation of the struct with sub-structs, the DOM as a
whole is a work of clean generality.

The DOM is a work of massive hyper-specificity, as each type of object—header,
canvas, Scalable Vector Graphic, rectangle, text, whatever—has associated its own set
of special properties which your browser or other reader will use to render or act upon
the object. Your browser’s developer tools will show you the full tree and associated
properties. Further, there is no fixed list of what those properties are. If you want to
add falafelness, and then asssign a javascript function to the object’s deepFry
property to modify the object’s CSS styles based on its falafelness, all that is entirely
valid. This right to assign arbitrary magic words is also open to the author of any
library, D3 included.

Further, there are the quirks of history, as these neat objects represent web pages
which include different HTML markers like IDs and spans, which tie in to cascad-
ing style sheets (CSS). Add it all together and any one object has attributes, tags,
styles, properties, content, events. Changing an object is almost always a straight-
forward tweak—once you win the seek-and-find of determining which attribute, tag,
style, property, content, or event to modify.

The HTML Histogram Stepping back from the potential for massive complexity,
here’s is a simple demo of a horizontal-bar histogram. The table has four rows, each
with an object of class bar, where the style characteristics of any bar object are listed

1https://b-k.github.io/1040.js

1

https://b-k.github.io/1040.js

in the header. Then in the table, the width style is set for each individual bar, like
style="width:200px;".

<html>
<head><style>
.bar {height: 10px; border: 2px solid; color: #2E9AFE;}
</style></head>

<body>
<table>
<tr><td>Joe</td> <td><div class=”bar” style=”width: 80px;”/></td

></tr>
<tr><td>Jane</td> <td><div class=”bar” style=”width:300px;”/></

td></tr>
<tr><td>Jerome</td> <td><div class=”bar” style=”width:300px;”/>&

lt;/td></tr>
<tr><td>Janet</td> <td><div class=”bar” style=”width:126px;”/></

td></tr>
</table>
</body>
</html>

Using any programming language at all, you could write a loop to produce a row
of this table for each observation in your data set (plus the requisite HTML header and
footer). Using only HTML and CSS, you’ve generated an OK data visualization.

You’ve probably already started on the SDVW in your head, and are thinking that
the spacing is too big, or the shade of blue is boring, or the label fonts are wrong.
And, of course, everything you would need to make those changes is in the DOM
somewhere. Want the bars to go up instead of rightward? Set the height style on
a per-bar basis instead of the width (and rearrange the table...). Want to give the
girls pink bars? Neither I nor the HTML standard can stop you from setting color
conditional on another column in the data set.

The Grammar of Graphics The GoG is a book by Leland Wilkinson, subsequently
implemented as various pieces of software, the most popular of which seems to be
ggplot2 for R. I have no idea whether the HTML histogram or the GoG came first,
but their core concept is the same: the objects on the screen—one per observation—
have a set of characteristics (herein æsthetics), and we should be able to vary any of
them based on the data. For example, maybe box height represents an observed value
and color represents a statistical confidence measure.

Gnuplot and earlier plotting programs don’t think of plots as objects with æsthetics.
The æsthetic built in to the top-level plot command is (X, Y, Z) position, and others can
be linked to data if there is a middle-layer function that was written to do so. ggplot2
is much more flexible, and every(?) æsthetic is set via the top-level command, but
each geometry still has a fixed list of æsthetics. After all, if you want to do something
unusual like change the axes’ thickness based on data, somebody had to write that up
using R’s base-layer graphics capabilities.

2

Applying the GoG principle, setting object æsthetics using data, to the object prop-
erties of the DOM is natural to the point of being obvious, as per the HTML histogram.
D3 just streamlines the process. You provide a data set, and it generates the right num-
ber of objects in a scatterplot, or bars, or graph, and applies your æsthetic rules to each.
It provides an event loop so that the points can be redrawn on demand, so a button can
switch how the drawing is done, censor some points and uncensor others, or update
on a modified data set. The workflow starts with a set of top-layer commands corre-
sponding to plot types, with ring plots, certain network plots, tried-and-true bar charts
and scatterplots. To make the tax graph, I used dagre-d32, a top layer to draw directed
graphs.

So we can get a lot done at the top layer in a GoG-type implementation, because
a lot of the little tweaks we want to make turn out to fit this concept of applying data
to an æsthetic. For those that don’t, we have the ability to modify every property,
attribute, tag, and style. I’m not sure if any custom-written base layer of any data viz
package will ever be able to achieve that sort of generality, and the SDVW via D3
feels accordingly different from the SDVW in a system with a fixed set of middle-layer
commands to tweak a plot.

As a tourist, the difficulties I had with D3 were primarily about getting to know
the DOM and its many idiosyncracies. The documentation clearly expects that you
already know how to manipulate objects and that the workings of the HTML histogram
is more-or-less obvious to you. But this is also D3’s strength. I had a mini-rant last
time about the documentation of dataviz packages, which are often lacking in the item-
by-item specifics one needs to make item-by-item changes to a plot. Meanwhile, web
developers do nothing better than write web pages documenting web page elements, so
the problem is not about finding hidden information but managing the sense of being
overwhelmed. You are empowered to make exactly the visualization you want.

2https://github.com/cpettitt/dagre-d3

3

https://github.com/cpettitt/dagre-d3

